
keyestudio WiKi

keyestudio WiKi

Nov 16, 2023

KS3016 RASPBERRY PI SENSOR STARTER KIT

1 1. Description: 1

2 2. Kit List: 3

3 3. Resources: 7

4 C Language Tutorial 9
4.1 1. Install Raspberry Pi OS System . 9
4.2 2. Install Raspberry Pi OS on Raspberry Pi 4B . 26
4.3 3. Preparations for C Language . 41

4.3.1 Hardware . 41
4.3.2 GPIO Extension Board . 43
4.3.3 Install WiringPi GPIO Library . 46
4.3.4 Run Example Code1 . 49

4.4 4. Projects . 54
4.4.1 Project 1Hello World . 54
4.4.2 Project 2LED Blinks . 55
4.4.3 Project 3SOS Light . 57
4.4.4 Project 4Breathing LED . 59
4.4.5 Project 5Traffic Lights . 63
4.4.6 Project 6Illuminating Lamp . 65
4.4.7 Project 7RGB Light . 67
4.4.8 Project 8Doorbell . 69
4.4.9 Project 9Passive Buzzer . 71
4.4.10 Project 10Button-controlled LED . 76
4.4.11 Project 11PIR Motion Sensor . 79
4.4.12 Project 12Fire Alarm . 81
4.4.13 Project 13Electronic Hourglass . 83
4.4.14 Project 14Collision Alarm . 87
4.4.15 Project 15Line-tracking Sensor . 89
4.4.16 Project 16Photo Interrupter Module . 91
4.4.17 Project 17Magnetic Detection . 93
4.4.18 Project 185V Relay . 95
4.4.19 Project19Touch-sensitive Alarm . 97
4.4.20 Project 20Obstacle Avoidance Sensor . 99
4.4.21 Project 21Reed Switch Module . 102
4.4.22 Project 22Vibration Alarm . 104
4.4.23 Project 23Servo . 107
4.4.24 Project 24Adjust the Brightness of LED . 109
4.4.25 Project 25Photoresistor . 114

i

4.4.26 Project 26Sound-activated Light . 116
4.4.27 Project 27I2C LCD1602 . 118
4.4.28 Project 28Water Level Monitor . 123
4.4.29 Project 29Flower-watering Device . 125
4.4.30 Project 30Temperature Alarm . 127
4.4.31 Project 31Steam in the Air . 129
4.4.32 Project 32MQ-2 Gas Leakage Alarm . 131
4.4.33 Project 33Alcohol Tester . 133
4.4.34 Project 34Joystick Module . 136
4.4.35 Project 35Ultrasonic Sensor . 138
4.4.36 Project 36 Light Intensity Detection . 142
4.4.37 Project 37Pressure Measurement . 144
4.4.38 Project 38Temperature Detection . 146
4.4.39 Project 39: Ultraviolet Light Detection . 148

5 Processing JAVA Tutorial 151
5.1 1.Preparations . 151

5.1.1 (1)Install processing IDE . 151
5.1.2 (2)Use Processing IDE . 157
5.1.3 (3)Copy Example Code to Raspberry Pi . 161

5.2 2.Projects . 163
5.2.1 Project 1Print Hello World . 163
5.2.2 Project 2LED Blinks . 165
5.2.3 Project 3Mouse-controlled LED . 169
5.2.4 Project 4Breathing LED . 170
5.2.5 Project 5RGB . 175
5.2.6 Project 6Active Buzzer . 180
5.2.7 Project 7Button-controlled LED . 184
5.2.8 Project 8PIR Motion Sensor . 187
5.2.9 Project 9Fire Alarm . 190
5.2.10 Project 10 Collision Alarm . 194
5.2.11 Project 11 Line-tracking Sensor . 198
5.2.12 Project 12 Magnetic Detection . 201
5.2.13 Project 14 Rotary Potentiometer . 208
5.2.14 Project 15 Photoresistor . 215
5.2.15 Project 16 Water Level Monitor . 218
5.2.16 Project 17 Flower-watering Device . 222
5.2.17 Project 18Joystick . 225

6 Python Tutorial 231
6.1 1. Install Raspberry Pi OS System . 231

6.1.1 1.1Hardware Tool . 231
6.1.2 1.2Software Tool . 231

6.2 2.Install Raspberry Pi OS on Raspberry Pi 4B . 250
6.2.1 (1) Burn System . 253
6.2.2 (2)Log in system . 256
6.2.3 (3) Remote Login . 260
6.2.4 (4) Check ip and mac address . 263
6.2.5 (5) Fix ip address of Raspberry Pi . 265
6.2.6 (6) Log in Desktop on Raspberry Pi Wirelessly . 267
6.2.7 (7) Open the remote desktop connection on Windows . 268

6.3 3. Preparations for Python . 271
6.3.1 3.1Hardware . 271
6.3.2 3.2Copy Example Code Folder to Raspberry Pi . 276

ii

6.4 4. Projects . 284
6.4.1 Project 1Python3 Shell . 284
6.4.2 Project 2LED Blinks . 288
6.4.3 Project 3: SOS Light . 290
6.4.4 Project 4: Breathing LED . 292
6.4.5 Project 5: Traffic Lights . 295
6.4.6 Project 6Illuminating Lamp . 297
6.4.7 Project 7RGB Light . 299
6.4.8 Project 8Doorbell . 302
6.4.9 Project 9: Passive Buzzer . 304
6.4.10 Project 10Button-controlled LED . 308
6.4.11 Project 11PIR Motion Sensor . 311
6.4.12 Project 12Fire Alarm . 313
6.4.13 Project 13Electronic Hourglass . 316
6.4.14 Project 14Collision Alarm . 319
6.4.15 Project 15Line Tracking Sensor . 321
6.4.16 Project 16Photo Interrupter Module . 323
6.4.17 Project 17Magnetic Detection . 325
6.4.18 Project 185V Relay . 327
6.4.19 Project 19: Touch capacitive Alarm . 329
6.4.20 Project 20Obstacle Avoidance Sensor . 332
6.4.21 Project 21Reed Switch Module . 335
6.4.22 Project 22Vibration Sensor . 337
6.4.23 Project 23Servo . 340
6.4.24 Project 24Adjust the Brightness of LED . 343
6.4.25 Project 25Photoresistor . 349
6.4.26 Project 26Sound-activated Light . 351
6.4.27 Project 27LCD1602 . 354
6.4.28 Project 28Water Level Monitor . 357
6.4.29 Project 29Flower-watering Device . 359
6.4.30 Project 30Temperature Alarm . 362
6.4.31 Project 31: Steam Sensor . 364
6.4.32 Project 32Gas Leakage Alarm . 366
6.4.33 Project 33Alcohol Tester . 369
6.4.34 Project 34Joystick Module . 372
6.4.35 Project 35Ultrasonic Sensor . 374
6.4.36 Project 36Light Intensity Detection . 377
6.4.37 Project 37Pressure Detection . 380
6.4.38 Project 38Temperature Detection . 382
6.4.39 Project 39Ultraviolet Light Detection . 385

iii

iv

CHAPTER

ONE

1. DESCRIPTION:

Raspberry Pi is a credit-card sized computer of low cost with Raspberry Pi OS as its official system and also compatible
with other systems like ubuntu and Windows IoT. Furthermore, it extends out 40 pins to link with sensors or modules,
which makes conducting all kind of experiments possible. You could get a camera monitor by plugging a camera to
Raspberry Pi. Equally, the voice interactive function could be achieved if a microphone or a camera is connected with
it.

And this is a purpose-built kit for Raspberry Pi enthusiasts, through which you could acquire knowledge of Linux and
Python, Java and other programming languages, as well as the application of sensors or modules.

Resources

Download code and more details, please refer to the following link: https://fs.keyestudio.com/KS3016

1

https://fs.keyestudio.com/KS3016

keyestudio WiKi

2 Chapter 1. 1. Description:

CHAPTER

TWO

2. KIT LIST:

When you get this kit, please confirm whether all components listed below are delivered.

Product Name Quantity Picture

RPI GPIO-PCF8591 Shield 1

White LED Module 1

Red LED Module 1

Traffic Light Module 1

3W LED Module 1

RGB Module 1
continues on next page

3

keyestudio WiKi

Table 1 – continued from previous page
Product Name Quantity Picture

Push Button Module 1

Active Buzzer Module 1

IR Obstacle Avoidance Module

Passive Buzzer Module 1

PIR Motion Sensor 1

Flame Sensor 1

Tilt Sensor 1

Collision Sensor 1

Line-tracking Sensor 1

Photo Interrupter Module 1

Hall Magnetic Sensor 1

5V Relay Module 1
continues on next page

4 Chapter 2. 2. Kit List:

keyestudio WiKi

Table 1 – continued from previous page
Product Name Quantity Picture

Capacitive Touch Sensor 1

Reed Switch Sensor 1

Vibration Sensor 1

Relay Module 1

Rotary Potentiometer Module 1

Photoresistor Sensor 1

Analog Sound Sensor 1

I2C LCD1602 Module 1

Water Level Sensor 1

Soil Humidity Sensor 1

LM35 Temperature Sensor 1

Steam Sensor 1

MQ-2Gas Sensor 1

MQ-3 Alcohol Sensor 1

Joystick Module 1
continues on next page

5

keyestudio WiKi

Table 1 – continued from previous page
Product Name Quantity Picture

Ultrasonic Module 1

TEMT6000 Ambient Light Sensor 1

Thin-film Pressure Sensor 1

Analog Temperature Sensor 1

GUVA-S12SD Ultraviolet Sensor 1

F-F DuPont Wire 40P 1

Screwdriver 1

USB Cable 1

6 Chapter 2. 2. Kit List:

CHAPTER

THREE

3. RESOURCES:

https://fs.keyestudio.com/KS3016

7

https://fs.keyestudio.com/KS3016

keyestudio WiKi

8 Chapter 3. 3. Resources:

CHAPTER

FOUR

C LANGUAGE TUTORIAL

Raspberry Pi and electronic components are controlled via C language here.

4.1 1. Install Raspberry Pi OS System

Hardware Tool

• Raspberry Pi 4B/3B/2B

• Above 8G TFT SD Card

• Card Reader

• Computer and other parts

Install Software Tool

Windows System

Install putty firstly:

Download Puttyhttps://www.chiark.greenend.org.uk//~sgtatham/putty/

9

https://www.chiark.greenend.org.uk//~sgtatham/putty/

keyestudio WiKi

10 Chapter 4. C Language Tutorial

keyestudio WiKi

After downloading the driver file double-click it and tap“Next”

4.1. 1. Install Raspberry Pi OS System 11

keyestudio WiKi

Click“Next”

Select“Install Putty files”and click“Install”.

12 Chapter 4. C Language Tutorial

keyestudio WiKi

After a few seconds, click“Finish”.

SSH Remote Login software -WinSCP

Download WinSCP: https://winscp.net/eng/download.php

4.1. 1. Install Raspberry Pi OS System 13

https://winscp.net/eng/download.php

keyestudio WiKi

After the download, click and .

Click“Accept”

Follow the below steps to finish the installation.

14 Chapter 4. C Language Tutorial

keyestudio WiKi

4.1. 1. Install Raspberry Pi OS System 15

keyestudio WiKi

After a few seconds, the installation is completed and click“Finish”;

SD Card Formatter

Format TFT card tool

16 Chapter 4. C Language Tutorial

keyestudio WiKi

Download SD Card Formatter

http://www.canadiancontent.net/tech/download/SD_Card_Formatter.html

4.1. 1. Install Raspberry Pi OS System 17

http://www.canadiancontent.net/tech/download/SD_Card_Formatter.html

keyestudio WiKi

Unzip the SDCardFormatterv5_WinEN package, double-click to run it.

Click“Next”and choose , then tap“Next”

18 Chapter 4. C Language Tutorial

keyestudio WiKi

Click“Next”and“Install”.

4.1. 1. Install Raspberry Pi OS System 19

keyestudio WiKi

After a few seconds, click“Finish”

20 Chapter 4. C Language Tutorial

keyestudio WiKi

Burn Win32DiskImager

Download Linkhttps://sourceforge.net/projects/win32diskimager/

a. After the download, double-click and tap“Run”

4.1. 1. Install Raspberry Pi OS System 21

https://sourceforge.net/projects/win32diskimager/

keyestudio WiKi

b. Select and tap“Next”.

22 Chapter 4. C Language Tutorial

keyestudio WiKi

c. Click“Browse. . . ”and find out the folder where the Win32DiskImager is located, tap“Next”.

d. Tick , click“Next”and“Install”

4.1. 1. Install Raspberry Pi OS System 23

keyestudio WiKi

d. Tick , click“Next”and“Install”

24 Chapter 4. C Language Tutorial

keyestudio WiKi

e. After a few seconds, click“Finish”. The installation is finished

Scan to search ip address software tool—WNetWatcher

Download Linkhttp://www.nirsoft.net/utils/wnetwatcher.zip

4.1. 1. Install Raspberry Pi OS System 25

http://www.nirsoft.net/utils/wnetwatcher.zip

keyestudio WiKi

Raspberry Pi Imager

https://www.raspberrypi.org/downloads/raspberry-pi-os/

(recommend downloading the version with desktop and commonly used software)

4.2 2. Install Raspberry Pi OS on Raspberry Pi 4B

Insert TFT RAM card to card reader, then interface card reader to USB port of computer.

Format TFT RAM card with SD Card Formatter software, as shown below:

26 Chapter 4. C Language Tutorial

https://www.raspberrypi.org/downloads/raspberry-pi-os/

keyestudio WiKi

4.2. 2. Install Raspberry Pi OS on Raspberry Pi 4B 27

keyestudio WiKi

28 Chapter 4. C Language Tutorial

keyestudio WiKi

Burn System

Burn the Raspberry Pi OS system to TFT card using Win32DiskImager software

4.2. 2. Install Raspberry Pi OS on Raspberry Pi 4B 29

keyestudio WiKi

30 Chapter 4. C Language Tutorial

keyestudio WiKi

Don’t eject card reader after burning mirror system, build a file named SSH, then delete .txt.

The SSH login function can be activated by copying SSH file to boot category, as shown below.

4.2. 2. Install Raspberry Pi OS on Raspberry Pi 4B 31

keyestudio WiKi

Eject Card Reader

Log in systemraspberry and PC should be in the same local area network

Insert TFT card into Raspberry, connect internet cable and plug in power.

If you have screen and HDMI cable of Raspberry Pi, you could view Raspberry Pi OS system activating.

If not, you can enter the desktop of Raspberry Pi via SSH remote login software—WinSCP and xrdp login.

Remote Login

Enter default user name, password and host name on WinSCP to log in.

Only a Raspberry Pi is connected in same network.

32 Chapter 4. C Language Tutorial

keyestudio WiKi

4.2. 2. Install Raspberry Pi OS on Raspberry Pi 4B 33

keyestudio WiKi

Check ip and mac address

Click to open terminal input the passwordraspberry, and press“Enter”on keyboard.

34 Chapter 4. C Language Tutorial

keyestudio WiKi

Logging in successfully, open the terminal, input ip a and tap“Enter”to check ip and mac address.

Form the above figure, mac address of this Raspberry Pi is dc:a6:32:17:61:9c, and ip address is 192.168.1.128(use ip
address to finish xrdp login)

Since mac address never changes, you could confirm ip via it.

4.2. 2. Install Raspberry Pi OS on Raspberry Pi 4B 35

keyestudio WiKi

Fix ip address of Raspberry Pi

Ip address is changeable, therefore, we need to make ip address fixed for convenient use.

Follow the below steps

Switch to root user

If without root user’s password

Set root passward

Input passwordin the terminalsudo passwd root to set password

Switch to root user

su root

Fix the configuration file of ip address

Firstly change ip address of the following configuration file

#New ip addressaddress 192.168.1.99

Copy the above new address to terminal and press“Enter”

Configuration File

echo -e ’

auto eth0

iface eth0 inet static

#Change IP address

address 192.168.1.99

netmask 255.255.255.0

gateway 192.168.1.1

network 192.168.1.0

broadcast 192.168.1.255

dns-domain 119.29.29.29

dns-nameservers 119.29.29.29

metric 0

mtu 1492

‘>/etc/network/interfaces.d/eth0

As shown below:

36 Chapter 4. C Language Tutorial

keyestudio WiKi

Reboot the system and activate the configuration file

Input the restart command in the terminal: sudo reboot

You could log in via fixed ip afterwards.

Check IP and insure ip address fixed well

Log in Desktop on Raspberry Pi Wirelessly

In fact, we can log in desktop on Raspberry Pi Wirelessly even without screen and HDMI cable.

VNC and Xrdp are commonly used to log in desktop of Raspberry Pi wirelessly. Let’s take example of Xrdp.

Install Xrdp Service in the terminal

Install Command

Switch to Root User: su root

4.2. 2. Install Raspberry Pi OS on Raspberry Pi 4B 37

keyestudio WiKi

Install apt-get install xrdp

Enter y and press “Enter”

As shown below:

Open the remote desktop connection on Windows

Press WIN+R on keyboard and enter mstsc.exe

As shown below

Input ip address of Raspberry Pi, as shown below.

Click“Connect”and tap“Connect”.

38 Chapter 4. C Language Tutorial

keyestudio WiKi

192.168.1.99 is ip address we use, you could change into yours ip address.

Click“Yes”.

Input user name: pi, default password: raspberry, as shown below:

4.2. 2. Install Raspberry Pi OS on Raspberry Pi 4B 39

keyestudio WiKi

Click“OK”or“Enter”, you will view the desktop of Raspberry Pi OS, as shown below:

Now, we finish the basic configuration of Raspberry Pi OS.

40 Chapter 4. C Language Tutorial

keyestudio WiKi

4.3 3. Preparations for C Language

C is a procedural programming language. It was initially developed by Dennis Ritchie in the year 1972. It was mainly
developed as a system programming language to write an operating system. The main features of C language include
low-level access to memory, a simple set of keywords, and clean style, these features make C language suitable for
system programmings like an operating system or compiler development.

Next to control 40 pins of Raspberry Pi via C language

4.3.1 Hardware

Raspberry Pi 4B

Raspberry Pi 4B Raspberry Pi 4B Model

Hardware Interfaces

4.3. 3. Preparations for C Language 41

keyestudio WiKi

40-Pin GPIO Header Description

GPIO pins are divided into BCM GPIO number, physics number and WiringPi GPIO number.

We usually use WiringPi GPIO number when using C language and BCM GPIO and physics number are used to Python,
as shown below:

In these lessons, we use C language, so WiringPi GPIO number is adopted.

Note: pin(3.3 V) on the left hand is square, but other pins are round. Turn Raspberry Pi over, there is a square GPIO
on the back.(you could tell from pin(3.3V).

42 Chapter 4. C Language Tutorial

keyestudio WiKi

Note: the largest current of each pin on Raspberry Pi 4B is 16mA and the aggregate current of all pins is not less than
51mA.

4.3.2 GPIO Extension Board

This extension board is led out by 40-pin headers of Raspberry Pi for convenient connection.

Note: the silk mark is also printed according to BCM GPIO number.

4.3. 3. Preparations for C Language 43

keyestudio WiKi

Since the Raspberry Pi itself does not have AD/DA function, an expansion board with this function is required when it
is connected to external analog sensors. And the PCF8591 chip, welded behind RPI GPIO-PCF8591 shield , has four
AD pins and one DA pin which can be connected to the Raspberry Pi via the I2C interface on the Pi.

There are two ways to fix Raspberry Pi with the RPI GPIO-PCF8591 shield available below:

Fix it with screws,nuts and pillar copper;

44 Chapter 4. C Language Tutorial

keyestudio WiKi

Fix without screws,nuts and pillar copper;

4.3. 3. Preparations for C Language 45

keyestudio WiKi

4.3.3 Install WiringPi GPIO Library

We will control IO ports of Raspberry Pi by WiringPi GPIO library, let’s install WiringPi GPIO library.

Click the terminal icon of Raspberry Pi and open the terminal, as shown below:

46 Chapter 4. C Language Tutorial

keyestudio WiKi

Enter the following commands in the terminal and tap“Enter”

cd /tmp

wget https://project-downloads.drogon.net/wiringpi-latest.deb

sudo dpkg -i wiringpi-latest.deb

As shown below

4.3. 3. Preparations for C Language 47

https://project-downloads.drogon.net/wiringpi-latest.deb

keyestudio WiKi

Check the version of WiringPi GPIO library and corresponding definition of 40-pin headers

Input the following commands and press“Enter”

gpio -v

gpio readall

The version of WiringPi GPIO library is 2.52

Pins definition of WiringPi GPIO Library

(note: the silk mark of our extension board is defined by pins of BCM GPIO as well)

48 Chapter 4. C Language Tutorial

keyestudio WiKi

4.3.4 Run Example Code1

Copy the C_code.zip we provide to pi folder, and extract the example code from zip file, as shown below:

4.3. 3. Preparations for C Language 49

keyestudio WiKi

Double-click C_code folder to look through example code, as shown below:

Set the default editor of file with .c

Enter lesson1_Hello_World and right-click Open with. . .

Click Programming to select Geany Programmer’s Editor :

50 Chapter 4. C Language Tutorial

keyestudio WiKi

Then, we can directly open file by doubl-click Geany Programmer’s Editor

The Use of Geany Programmer’s Editor

Open“HelloWorld.c”via it, click to compile code to check grammar errors.

4.3. 3. Preparations for C Language 51

keyestudio WiKi

Run Example Code

Terminal enters the corresponding coursesfor example, enter lesson1_Hello_World.

Enter the route with terminal command cd

cd /home/pi/C_code/lesson1_Hello_World

Input the compilation command

gcc HelloWorld.c -o HelloWorld -lwiringPi

Input ls to check file of the current folder:

The compilation file:HelloWorld

Run a compilation file: HelloWorld

Input commandsudo ./HelloWorld(as shown below)

52 Chapter 4. C Language Tutorial

keyestudio WiKi

Command Explanation

You could select the folder and right-click to choose Openin the terminal as shown below, if you feel it complicated to
enter the route.

4.3. 3. Preparations for C Language 53

keyestudio WiKi

4.4 4. Projects

Note: G, - and GND marked on sensors and modules are so-called positive, which are connected to GND of RPI
GPIO-PCF8591 Shield ; V and VCC are known as positive, which are interfaced 3V3 or 5V on extension board.

4.4.1 Project 1Hello World

(1)Run Example Code

Input the following commands in the terminal, and press“Enter”:

cd /home/pi/C_code/lesson1_Hello_World

gcc HelloWorld.c -o HelloWorld -lwiringPi

sudo ./HelloWorld

(2)Test Results

Terminal prints Hello World ! , as shown below:

(3)Example Code:

#include <wiringPi.h> //wiringPi GPIO library
#include <stdio.h> //standard input & output library

int main() //Main function, the entry of the program
{

wiringPiSetup(); //Initializes the wiringPi GPIO library
while(1) //An infinite loop
{

(continues on next page)

54 Chapter 4. C Language Tutorial

keyestudio WiKi

(continued from previous page)

printf("Hello World!\n"); //\n is a newline print
delay(1000); //delay 1000ms

}
}

4.4.2 Project 2LED Blinks

(1)Description

Let’s start from a rather basic and simple experiment—-LED Blinks.

(2)Components Needed:

Raspberry Main Board*1 RPI GPIO-PCF8591
Shield*1

White LED Module *1 F-F DuPont Wires

(3)Knowledge about Component :

The white LED module is a commonly used LED module. It is a F5 LED with white appearance and white light
display. During experiments, when the G and V on the module are powered up and the signal end S is at high level ,the
white LED is on while when the S is at low level, the LED is off.

The module is compatible with various microcontroller control boards, such as arduino series microcontrollers. The
white LED module can open and close the S8050 NPN transistor by controlling the high and low level of the IO port
of the single-chip microcomputer so as to turn on and off the LED.

(4)Connection Diagram

White LED Module RPI GPIO-PCF8591 Shield
S SIO18
V 5V
G G

(5)Working Principle

According to the diagram above we can find out that the positive pole(V) is connected to 5V, negative pole(G) to GND
and signal terminal(S) to the pin of GPIO18. When GPIO18 outputs high level, LED is on; when it outputs low level,
LED is off.

(6)Run Example Code

Input the following commands in the terminal and press“Enter”

cd /home/pi/C_code/lesson2_LED_Blinking

4.4. 4. Projects 55

keyestudio WiKi

gcc LED_Blinking.c -o LED_Blinking -lwiringPi

sudo ./LED_Blinking

(7)Test Results

Terminal prints and LED flashes.

Note: Press Ctrl + C on keyboard and exit code running.

(8)Example Code

#include <wiringPi.h>
#include <stdio.h>

#define ledPin 1 //define led pin, BCM GPIO 18

int main()
{
wiringPiSetup(); //Initialize wiringPi

pinMode(ledPin,OUTPUT); //set the ledPin OUTPUT mode

while(1)
{

digitalWrite(ledPin,HIGH); //turn on led
printf("turn on the LED\n");
delay(500); //delay 500ms
digitalWrite(ledPin,LOW); //turn off led
printf("turn off the LED\n");
delay(500);

}
}

56 Chapter 4. C Language Tutorial

keyestudio WiKi

4.4.3 Project 3SOS Light

(1)Description

S.O.S is a Morse code distress signal , used internationally, that was originally established for maritime use. We will
present it with flashing LED.

(2)Components Needed:

Raspberry Main Board*1 RPI GPIO-PCF8591
Shield*1

White LED Module *1 F-F DuPont Wires

(3)Connection Diagram

White LED Module RPI GPIO-PCF8591 Shield
S SIO18
V 5V
G G

(4)Run Example Code

Input the following commands and press “Enter”

cd /home/pi/C_code/lesson3_SOS

gcc SOS.c -o SOS -lwiringPi

sudo ./SOS

(5)Test Results

LED flashes quickly for three times, three times slowly and quickly three times, the terminal prints . . . _ _ _ . . .

4.4. 4. Projects 57

keyestudio WiKi

Note: Press Ctrl + C on keyboard and exit code running.

(6)Example Code:

#include <wiringPi.h>
#include <stdio.h> //The stdio.h header file defines three variable types,

//some macros, and various functions to perform input and output.

#define ledPin 1 //define led pin
int i1,i2,i3;

int main()
{

wiringPiSetup(); //Initialize wiringPi

pinMode(ledPin,OUTPUT); //set the ledPin OUTPUT mode

while(1)
{

while(i1<3)
{

digitalWrite(ledPin,HIGH); //turn on led
delay(100); //delay 100ms
digitalWrite(ledPin,LOW); //turn off led
delay(100);
i1 = i1 + 1;
printf(".\n");

}
while(i2<3)
{

digitalWrite(ledPin,HIGH); //turn on led
delay(1000); //delay 1000ms
digitalWrite(ledPin,LOW); //turn off led
delay(1000);
i2 = i2 + 1;

(continues on next page)

58 Chapter 4. C Language Tutorial

keyestudio WiKi

(continued from previous page)

printf("-\n");
}
while(i3<3)
{

digitalWrite(ledPin,HIGH); //turn on led
delay(100); //delay 100ms
digitalWrite(ledPin,LOW); //turn off led
delay(100);
i3 = i3 + 1;
printf(".\n");

}
//clean
i1 = 0;
i2 = 0;
i3 = 0;
printf(" \n");
delay(500);

}

}

4.4.4 Project 4Breathing LED

(1)Description

A“breathing LED” is a phenomenon where an LED’s brightness smoothly changes from dark to bright and back to
dark, continuing to do so and giving the illusion of an LED“breathing.” This phenomenon is similar to a lung breathing
in and out. So how to control LED’s brightness? We need to take advantage of PWM.

(2)Components Needed

Raspberry Main Board*1 RPI GPIO-PCF8591
Shield*1

Red LED Module *1 F-F DuPont Wires

(3)Working Principle

We use the PWM output of GPIO, PWM outputs analog signals and output value is 0~100 which is equivalent to output
voltage 0~3.3V from GPIO port.

According to Ohm’s law: U/R = I, the resistance is 220, and the value of voltage U changes, so does the value of current
I, which can control the brightness of the LED lamp.

PWM (Pulse Width Modulation) is the control of the analog circuit through the digital output of microcomputer and a
method that makes digital coding on analog signal levels.

4.4. 4. Projects 59

keyestudio WiKi

It sends square waves with certain frequency through digital pins, that is, high level and low level output alternately for
a period of time. Total time of each group high and low level is fixed, which is called cycle.

The time of high level output is pulse width whose percentage is called Duty Cycle. The longer that high level lasts,
the larger the duty cycle of analog signals is, and the corresponding voltage as well.

Below chart is pulse width 50%, then the output voltage is 3.3 * 50% = 1.65Vand the brightness of LED is medium.

(4)Connection Diagram

Red LED Module RPI GPIO-PCF8591 Shield
S SIO18
V 5V
G G

60 Chapter 4. C Language Tutorial

keyestudio WiKi

(5)Run Example Code 1

Input the following commands and press “Enter”:

cd /home/pi/C_code/lesson4_Breathing_LED

gcc Breathing_LED1.c -o Breathing_LED1 -lwiringPi

sudo ./Breathing_LED1

(6)Test Result 1

LED gradually brightens then darkens and changes in a loop.

Note: Press Ctrl + C on keyboard and exit code running.

(7)Example Code 1

#include <stdio.h>
#include <wiringPi.h>

#define LED 1 //define led pin

int main(void)
{

int bright;
printf("Raspberry Pi wiringPi PWM test program\n");
wiringPiSetup(); //Initialize wiringPi
pinMode(LED,PWM_OUTPUT); //set the ledPin OUTPUT mode

while(1)
{

for (bright = 0; bright < 1024; ++bright) // pwm 0~1024
{

pwmWrite(LED,bright);
printf("bright:%d\n",bright); //%d is the integer output, bright is the␣

→˓variable to output
delay(10);

}
for (bright = 1023; bright >= 0; --bright)

(continues on next page)

4.4. 4. Projects 61

keyestudio WiKi

(continued from previous page)

{
pwmWrite(LED,bright);
printf("bright:%d\n",bright);
delay(10);

}
}
return 0;

}

(8)Run Example Code 2

Software simulates PWM output:

Input the following commands and press “Enter”:

cd /home/pi/C_code/lesson4_Breathing_LED

gcc Breathing_LED2.c -o Breathing_LED2 -lwiringPi

sudo ./Breathing_LED2

(9)Test Results2

LED gradually brightens then darkens and repeats this pattern.

Note: Press Ctrl + C on keyboard and exit code running

(10)Example Code2

#include <stdio.h>
#include <wiringPi.h>
#include <softPwm.h> //Software PWM library

#define LED 1

int main(void)
{

int i = 0;
wiringPiSetup(); //Initialize wiringPi
softPwmCreate(LED, 0, 100); //Create pin LED as the PWM output(0~100)
while (1)
{

for(i=0; i<100; i++)
{

softPwmWrite(LED, i); //pwm write
delay(20);
printf("PWM = %d\n",i);

}
for(i=99; i>0; i--)
{

softPwmWrite(LED, i);
delay(20);
printf("PWM = %d\n",i);

}
}
return 0;

}

62 Chapter 4. C Language Tutorial

keyestudio WiKi

4.4.5 Project 5Traffic Lights

(1)Description

In this lesson, we will learn how to control multiple LED lights and simulate the operation of traffic lights.

Traffic lights are signaling devices positioned at road intersections, pedestrian crossings, and other locations to control
flows of traffic.

Green light allows traffic to proceed in the direction denoted if it is safe to do so and there is room on the other side of
the intersection.

Red light prohibits any traffic from proceeding. A flashing red indication requires traffic to stop and then proceed when
it is safe (equivalent to a stop sign).

Amber light (also known as ‘orange light’ or ‘yellow light’):

Warns that the signal is about to change to red, with some jurisdictions requiring drivers to stop if it is safe to do so,
and others allowing drivers to go through the intersection if safe to do so.

(2)Components Needed

Raspberry Main Board*1 RPI GPIO-PCF8591
Shield*1

Traffic Light Module
*1

F-F DuPont Wires

(3)Connection Diagram

Traffic Light Module RPI GPIO-PCF8591 Shield
R IO18
Y IO23
G IO24
GND GND

4.4. 4. Projects 63

keyestudio WiKi

(4)Run Example Code

Input the following commands and press “Enter”:

cd /home/pi/C_code/lesson5_Traffic_Light

gcc Traffic_Light.c -o Traffic_Light -lwiringPi

sudo ./Traffic_Light

(5)Test Results

Note: Press Ctrl + C on keyboard and exit code running.

Red light is on 5s and off, yellow light flashes 3s and turn off, green light is lit for 5s and off, in loop way.

(6)Example Code

#include <wiringPi.h>

#define R_pin 1 //BCM GPIO 18
#define G_pin 5 //BCM GPIO 24
#define Y_pin 4 //BCM GPIO 23

int main()
{
wiringPiSetup();
char j;
pinMode(R_pin,OUTPUT);
pinMode(G_pin,OUTPUT);
pinMode(Y_pin,OUTPUT);

digitalWrite(R_pin, LOW);
digitalWrite(G_pin, LOW);
digitalWrite(Y_pin, LOW);

while(1)
(continues on next page)

64 Chapter 4. C Language Tutorial

keyestudio WiKi

(continued from previous page)

{
digitalWrite(R_pin, HIGH);//// turn on red LED
delay(5000);// wait 5 seconds
digitalWrite(R_pin, LOW); // turn off red LED
for(j=0;j<3;j++) // blinks for 3 times
{
digitalWrite(Y_pin, HIGH);// turn on yellow LED
delay(500);// wait 0.5 second
digitalWrite(Y_pin, LOW);// turn off yellow LED
delay(500);// wait 0.5 second
}

digitalWrite(G_pin, HIGH);// turn on green LED
delay(5000);// wait 5 second
digitalWrite(G_pin, LOW);// turn off green LED
}

}

4.4.6 Project 6Illuminating Lamp

(1)Description

Nowadays, illuminating lamps are indispensable in our lives for we need them to light the surroundings for us, especially
at night. In this experiment, we will use a LED of 3W . This LED is of high brightness because the lamp beads it carries
are 3W, that is, the luminous power is 3W. We can apply this module to Arduino, Raspberry Pi and other projects. For
example, smart robots can use the module for lighting purposes. However, please note that for safety reasons, do not
touch your eyes with this LED directly. Otherwise your eyes maybe damaged.

(2)Components Needed

Raspberry Main Board*1 RPI GPIO-PCF8591
Shield*1

3W LED Module *1 F-F DuPont Wires

Connection Diagram

3W LED Module RPI GPIO-PCF8591 Shield
S SIO18
V 5V
G G

4.4. 4. Projects 65

keyestudio WiKi

(3)Run Example Code

Input the following commands and press “Enter”:

cd /home/pi/C_code/lesson6_3W_LED

gcc 3W_LED.c -o 3W_LED -lwiringPi

sudo ./3W_LED

(4)Test Results

When the program runs, the 3W LED lights and it is shown on the terminal.

Note: Press Ctrl + C on keyboard and exit code running.

Example Code

#include <wiringPi.h>
#include <stdio.h>

#define ledPin 1 //define led pin, BCM GPIO 18

int main()
{
wiringPiSetup(); //Initialize wiringPi

pinMode(ledPin,OUTPUT); //set the ledPin OUTPUT mode

while(1)
{

digitalWrite(ledPin,HIGH); //turn on led
printf("turn on the LED\n");

}
}

66 Chapter 4. C Language Tutorial

keyestudio WiKi

4.4.7 Project 7RGB Light

(1)Description

In this chapter, we will demonstrate how RGB lights show different colors via programming

(2)Components Needed

Raspberry Main Board*1 RPI GPIO-PCF8591
Shield*1

RGB Module *1 F-F DuPont Wires

(3)Knowledge about Component:

RGB Module

The RGB module integrates with three LEDs in red, green and blue respectively. These three LEDs also share the same
anode. The combinations of these three colors can form almost all other colors visible to human eyes. Thus, it has
found wide applications in terms of colors.

Red, green and blue are three primary colors. They could produce all kinds of visible lights when mixing them up.
Computer screen, single pixel mobile phone screen, neon light work under this principle.

Theoretically, if we use three 8-bit PWM (Pulse Width Modulation) signals to control a RGB LED, we can create 28 *
28 * 28 = 16777216 (about 16 million) different combinations.

Now, let’s make a RGB LED display all kinds of colors.

(4)Connection Diagram

4.4. 4. Projects 67

keyestudio WiKi

RGB Module RPI GPIO-PCF8591 Shield
R IO24
G IO23
B IO18
V 5V

(5)Run Example Code

Input the following commands and press “Enter”:

cd /home/pi/C_code/lesson7_RGB_LED

gcc RGB_LED.c -o RGB_LED -lwiringPi

sudo ./RGB_LED

(6)Test Results

RGB lights show colors randomly

Note: Press Ctrl + C on keyboard and exit code running

RGB light shows the all kinds of colors randomly.

(7)Example Code

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <wiringPi.h>
#include <softPwm.h>
#include <time.h>

#define pin_R 5 //BCM GPIO 24
#define pin_G 4 //BCM GPIO 23
#define pin_B 1 //BCM GPIO 18

int main(void){
(continues on next page)

68 Chapter 4. C Language Tutorial

keyestudio WiKi

(continued from previous page)

int red,green,blue;
if (wiringPiSetup() == -1){

printf("Setup GPIO error!\n");
return -1;

}
softPwmCreate(pin_R, 0, 100);
softPwmCreate(pin_G, 0, 100);
softPwmCreate(pin_B, 0, 100);

while (1){
srand((unsigned)time(NULL));
red = rand()%101 + 0;
green = rand()%101 + 0;
blue = rand()%101 + 0;
softPwmWrite(pin_R, red);
softPwmWrite(pin_G, green);
softPwmWrite(pin_B, blue);
delay(100);

}
return 0;

}

4.4.8 Project 8Doorbell

(1)Description

Doorbells have made our daily life more convenient. When a guest arrives, we will get this information when he/she
rings the bell. In this project, we will learn to make a doorbell by ourselves.

(2)Components Needed

Raspberry Main Board*1 RPI GPIO-PCF8591
Shield*1

Active Buzzer
Module *1

Push Button Sen-
sor*1

F-F DuPont Wires

(3)Knowledge about Component:

Active Buzzer ModuleThe active buzzer is equipped with an internal oscillator, which makes it possible to auto-
matically generate a tone as long as current flows through. It is very easy and convenient. But it also has its shortcoming
that the fixed frequency means it can only makes a monotone.

Push Button Sensor

It can control circuits. Before pressed, the current can’t pass from one end to the other end. Both ends are like two
mountains. There is a river in between. We can’t cross this mountain to another mountain. When pressed, the internal
metal piece is connecting the two sides to let the current pass, just like building a bridge to connect the two mountains.

4.4. 4. Projects 69

keyestudio WiKi

Inner structure: , 1 and 1 , 2 and 2 are connected. However, 1 and 2 are discon-
nected when the button is not pressed; 1 and 2 are connected when pressing the button.

(4)Connection Diagram

Active Buzzer Mod-
ule

RPI GPIO-PCF8591
Shield

Push Button Sen-
sor

RPI GPIO-PCF8591
Shield

S SIO16 S SIO18

V 5V V 5V

G G G G

(5)Run Example Code

Input the following commands and press “Enter”:

cd /home/pi/C_code/lesson8_Active_Buzzer

gcc Active_Buzzer.c -o Active_Buzzer -lwiringPi

sudo ./Active_Buzzer

(6)Test Results

After running the program and pressing the button, the buzzer makes a sound and the terminal prints 0 (low level);
otherwise, the buzzer makes no sounds and the terminal prints 1 (high level).

Note: Press Ctrl + C on keyboard and exit code running.

(7)Example Code

#include <wiringPi.h>
#include <stdio.h>
#define button 1 //button pin BCM GPIO 18
#define buzzer 27 //buzzer pin BCM GPIO 16
int main()

(continues on next page)

70 Chapter 4. C Language Tutorial

keyestudio WiKi

(continued from previous page)

{
wiringPiSetup();
char val;
{
pinMode(button,INPUT); //set the button pin INPUT mode
pinMode(buzzer,OUTPUT);

}

while(1)
{
val=digitalRead(button); // digital read
printf("val = %d\n", val);
if(val==0)//check if the button is pressed, if yes, turn on the Buzzer
digitalWrite(buzzer,HIGH); //The buzzer made a sound

else
digitalWrite(buzzer,LOW);

}
}

4.4.9 Project 9Passive Buzzer

(1)Description

We will conduct an interesting experiment—–control passive buzzer to compose a song.

(2)Components Needed

Raspberry Main Board*1 RPI GPIO-PCF8591
Shield*1

Passive Buzzer Module
*1

F-F DuPont Wires

(3)Knowledge about Component

Passive buzzer

Passive buzzer is a type of electronic buzzer with integrated structure.

Buzzers can be categorized as active and passive ones (see the following picture).

An active buzzer has a built-in oscillating source, so it will make sounds when electrified. But a passive buzzer does
not have such source, so it will not tweet if DC signals are used; instead, you need to use square waves whose frequency
is between 2K and 5K to drive it. The active buzzer is often more expensive than the passive one because of multiple
built-in oscillating circuits.

4.4. 4. Projects 71

keyestudio WiKi

Turn the pins of two buzzers face up, and the one with a green circuit board is a passive buzzer, while the other enclosed

with a black tape is an active one, as shown

Passive buzzer provides alternating current to sound coils to make electronic magnet and permanent magnet attraction
or repulsion so as to push vibration film to emit sound, according to electromagnetic induction.

Only certain frequency with high and low levels can make passive buzzer emit sound, since DC current only makes
vibration film vibrated continuously rather than producing sound.

(4)Connection Diagram

Passive Buzzer Module RPI GPIO-PCF8591 Shield
S SIO18
V 5V
G G

(5)Run Example Code1

Input the following commands and press “Enter”:

cd /home/pi/C_code/lesson9_Passive_Buzzer

gcc Passive_Buzzer1.c -o Passive_Buzzer1 -lwiringPi

sudo ./Passive_Buzzer1

(6)Test Results1

After running the program, the passive buzzer makes the sound “didi”.

Note: Press Ctrl + C on keyboard and exit code running.

(7)Example Code1

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>

(continues on next page)

72 Chapter 4. C Language Tutorial

keyestudio WiKi

(continued from previous page)

#include <wiringPi.h>

#define buzPin 1 //BCM GPIO 18

void init()
{
if (wiringPiSetup () == -1)

exit (1) ;
pinMode(buzPin, PWM_OUTPUT); //Set the pin to PWM output mode
pwmSetMode(PWM_MODE_MS); // Set PWM signal mode to MS mode
pwmSetClock(32); // Set the clock base frequency to 19.2m /32=600KHZ

}

void beep(int freq,int t_ms)
{
int range;
if(freq<100||freq>1000)
{

printf("invalid freq");
return;

}
// Set the range to 600KHZ/ Freq. That is,
//the freQ frequency period is composed of the range of 1/600khz.
range=600000/freq;
pwmSetRange(range);
pwmWrite(buzPin,range/2); // Set the duty cycle to 50%.
if(t_ms>0)
{

delay(t_ms);
}

}

int main()
{

wiringPiSetup();
init();

while(1)
{

beep(262,300); //Frequency and time
printf("do\n");
beep(294,300);
printf("re\n");
beep(330,300);
printf("mi\n");
beep(349,300);
printf("fa\n");
beep(392,300);
printf("so\n");
beep(440,300);
printf("la\n");
beep(494,300);

(continues on next page)

4.4. 4. Projects 73

keyestudio WiKi

(continued from previous page)

printf("si\n");
beep(523,300);
printf("Do\n");
pwmWrite(buzPin,0); //turn off the buzzer
delay(2000);

}
}

(8)Run Example Code2

Input the following commands and press “Enter”:

cd /home/pi/C_code/lesson9_Passive_Buzzer

gcc Passive_Buzzer2.c -o Passive_Buzzer2 -lwiringPi

sudo ./Passive_Buzzer2

(9)Test Results2

The passive buzzer plays a “Happy Birthday”song.

Note: Press Ctrl + C on keyboard and exit code running.

(10)Example Code2

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <wiringPi.h>
#define Do 262
#define Re 294
#define Mi 330
#define Fa 349
#define Sol 392
#define La 440
#define Si 494
#define Do_h 532
#define Re_h 587
#define Mi_h 659
#define Fa_h 698
#define Sol_h 784
#define La_h 880
#define Si_h 988

#define buzPin 1 //buzzer pin BCM GPIO 18

//The tones
int song_1[]=
{

Sol,Sol,La,Sol,Do_h,Si,
Sol,Sol,La,Sol,Re_h,Do_h,
Sol,Sol,Sol_h,Mi_h,Do_h,Si,La,
Fa_h,Fa_h,Mi_h,Do_h,Re_h,Do_h

};

(continues on next page)

74 Chapter 4. C Language Tutorial

keyestudio WiKi

(continued from previous page)

//To the beat
float beat_1[]=
{

0.5,0.5,1,1,1,1+1,
0.5,0.5,1,1,1,1+1,
0.5,0.5,1,1,1,1,1,
0.5,0.5,1,1,1,1+1

};

int length;
int x;

void init()
{
if (wiringPiSetup () == -1)

exit (1) ;
pinMode(buzPin, PWM_OUTPUT); //Set the pin to PWM output mode
pwmSetMode(PWM_MODE_MS); // Set PWM signal mode to MS mode
pwmSetClock(32); // Set the clock base frequency to 19.2m /32=600KHZ

}

void beep(int freq,int t_ms)
{
int range;
if(freq<100||freq>1000)
{

printf("invalid freq");
return;

}
// Set the range to 600KHZ/ Freq. That is,
//the freQ frequency period is composed of the range of 1/600khz.
range=600000/freq;
pwmSetRange(range);
pwmWrite(buzPin,range/2); // Set the duty cycle to 50%.
if(t_ms>0)
{

delay(t_ms);
}

}

int main()
{
wiringPiSetup();
init();
length=sizeof(song_1)/sizeof(song_1[0]); //Number of tones

while(1)
{
for(x=0;x<length;x++) //play
{
beep(song_1[x],500*beat_1[x]);

}

(continues on next page)

4.4. 4. Projects 75

keyestudio WiKi

(continued from previous page)

pwmWrite(buzPin,0); //turn off buzzer
delay(2000);

}
}

4.4.10 Project 10Button-controlled LED

(1)Description

Usually a complete open loop control is made of external information input, controller and actuator.

The external information is input into controller which can analyze the input data and send to control signals to make
actuator to react.

A button-controlled LED is decided by an open loop control. Next, we will make a desk lamp with a button, an LED
and RPi. LED is on when button is pressed, on the contrary, it will be off.

(2)Components Needed

Raspberry Main Board*1 RPI GPIO-PCF8591
Shield*1

Red LED Module
*1

Push Button Sen-
sor*1

F-F DuPont Wires

(3)Connection Diagram

76 Chapter 4. C Language Tutorial

keyestudio WiKi

Red LED Module RPI GPIO-PCF8591 Shield Push Button Sensor RPI GPIO-PCF8591 Shield

S SIO16 S SIO18

V 5V V 5V

G G G G

(4)Eliminate button jitters

When the button is pressed, its state does not change immediately because it is a mechanical vibration and continuous
jitters exists before entering another state. It is similar to release the button.

4.4. 4. Projects 77

keyestudio WiKi

Therefore, if we directly detect the state of the button, there will be multiple presses and releases. Jitters will mislead
the high-speed operation of the MCU to cause considerable misjudgments. To eliminate the button jitters, here we put
forward a solution that we design to detect the button state for more than once. After a while, the stable button state is
adopted to represent that the button is pressed.

(5)Run Example Code

Input the following commands and press “Enter”:

cd /home/pi/C_code/lesson10_Button_controlled_LED

gcc Button_controlled_LED.c -o Button_controlled_LED -lwiringPi

sudo ./Button_controlled_LED

(6)Test Results

Press button, LED turns on, press again, LED is off and then repeats this pattern.

Note: Press Ctrl + C on keyboard and exit code running.

(7)Example Code

#include <wiringPi.h>
#include <stdio.h>
#define btnPin 1 // button Pin BCM GPIO 18

(continues on next page)

78 Chapter 4. C Language Tutorial

keyestudio WiKi

(continued from previous page)

#define ledPin 27 // LED pin BCM GPIO 16

int main()
{
wiringPiSetup();
int val; //Button variables
int count = 0; //Record the number of button presses
int flag = 0; //Odd even variable
pinMode(btnPin,INPUT);
pinMode(ledPin,OUTPUT);
digitalWrite(ledPin,LOW); //turn off led

while(1)
{
val=digitalRead(btnPin); //Receive button value
if(val == 0)
{
delay(10);
val=digitalRead(btnPin); //Receive button value
if(val == 1)
{
count = count + 1;
printf("count = %d",count);

}
}
flag = count % 2; //Remainder 2 ,Even is 0, odd is 1
if(flag == 1)
digitalWrite(ledPin,HIGH); //turn on led

else
digitalWrite(ledPin,LOW); //turn off led

}
}

4.4.11 Project 11PIR Motion Sensor

(1)Description

Lamps only light up when people passes by installed in some places, which are conductive to energy and cost saving.
Have you ever thought about the principle behind these lamps? It is because of PIR motion sensors. In this lesson, we
will learn about PIR motion sensor.

(2)Components Needed

Raspberry Main Board*1 RPI GPIO-PCF8591
Shield*1

Red LED Module
*1

PIR Motion Sen-
sor*1

F-F DuPont Wires

4.4. 4. Projects 79

keyestudio WiKi

(3)Knowledge about Component

PIR Motion Sensor

The principle of human infrared sensor is that when certain crystals, such as lithium tantalate and triglyceride sulfate,
are heated, the two ends of the crystal will generate an equal number of charges, with opposite signs, which can be
converted into voltage output by an amplifier.

Human body will emit IR ray, although weak but can be detected. This sensor outputs 1 (high level) when human
being is detected; otherwise, it outputs 0(low level).

Note: Nothing but moving person can be detected, with the detection distance up to 3m.

(4)Connection Diagram

Red LED Module RPI GPIO-PCF8591 Shield PIR Motion Sensor RPI GPIO-PCF8591 Shield

S SIO5 S SIO18

V 5V V 5V

G G G G

(5)Working Principle

When the PIR motion sensor detects movements around, the LED lights and the terminal prints somebody; while when
there is no movements sensed, the LED reminds off and the terminal prints nobody.

(6)Run Example Code

Input the following commands and press “Enter”:

cd /home/pi/C_code/lesson11_PIR_Led

gcc PIR_Led.c -o PIR_Led -lwiringPi

sudo ./PIR_Led

(7)Test Results

LED will turn on and terminal prints somebody if PIR motion sensor detects people; if not, LED will be off and terminal
will print nobody.

Note: Press Ctrl + C on keyboard and exit code running.

80 Chapter 4. C Language Tutorial

keyestudio WiKi

(8)Example Code

#include <wiringPi.h>
#include <pcf8591.h>
#include <stdio.h>

#define PIR_pin 1 //PIR pin BCM GPIO 18
#define led_pin 21 //LED pin BCM GPIO 5

int main(void)
{
int val = 0;
wiringPiSetup();
pinMode(PIR_pin,INPUT);
pinMode(led_pin,OUTPUT);

while(1)
{

val=digitalRead(PIR_pin);
if(val==1)
{

printf("somebody\n");
digitalWrite(led_pin,HIGH);

}
else
{

printf("nobody\n");
digitalWrite(led_pin,LOW);

}
}

}

4.4.12 Project 12Fire Alarm

(1)Description

A flame detector is a sensor designed to detect and respond to the presence of flames or fire, allowing flame detection.

(2)Components Needed

Raspberry Main Board*1 RPI GPIO-PCF8591
Shield*1

Active Buzzer
Module *1

Flame Sensor*1 F-F DuPont Wires

(3)Knowledge about Component

Flame Sensor

4.4. 4. Projects 81

keyestudio WiKi

Flame sensor is made based on the principle that infrared ray is highly sensitive to flame. It has an infrared receiving
tube specially designed to detect fire, and then convert the flame brightness to fluctuating level signal. The signals are
then input into the central processor and be dealt with accordingly.

Flame sensor is used to detect fire source with wavelength in 760nm1100nm, detection angle is 60°. When its IR waves
length is close to 940nm, and its sensitivity is the highest.

Notice that keep flame sensor away from fire source to defend its damage for its working temperature is between -25°-
85°

Note: a potentiometer is built in the sensor so its sensitivity can be adjusted by rotating it.

(4)Connection Diagram

Active Buzzer Module RPI GPIO-PCF8591 Shield Flame Sensor RPI GPIO-PCF8591 Shield

S SIO16 D0 SIO18

V 5V VCC 5V

G G GND G

(5)Run Example Code

Input the following commands and press “Enter”:

cd /home/pi/C_code/lesson12_Flame_Buzzer

gcc Flame_Buzzer.c -o Flame_Buzzer -lwiringPi

sudo ./Flame_Buzzer

(6)Test Results

After running the program, when the sensor detects flame, the buzzer makes noises, the LED1 lights and the terminal
prints 0 (low level); otherwise, the buzzer makes no sounds, the LED1 reminds off and the terminal prints 1 (high
level).

82 Chapter 4. C Language Tutorial

keyestudio WiKi

Note: Press Ctrl + C on keyboard and exit code running.

(7)Example Code

#include <wiringPi.h>
#include <stdio.h>
#define flamePin 1 //BCM GPIO 18
#define buzPin 27 //define buzzer pin BCM GPIO 16

int main()
{
wiringPiSetup();
char val;
{
pinMode(flamePin,INPUT);
pinMode(buzPin,OUTPUT);

}

while(1)
{
val=digitalRead(flamePin);
printf("val = %d\n",val);
if(val==0) //When flame is detected
digitalWrite(buzPin,HIGH); //Buzzer turn on
else
digitalWrite(buzPin,LOW); //Buzzer turn off

}
}

4.4.13 Project 13Electronic Hourglass

(1)Description

An hourglass (or sand glass, sand timer, sand clock or egg timer) is a device used to measure the passage of time. It
comprises two glass bulbs connected vertically by a narrow neck that allows a regulated flow of a substance(historically
sand) from the upper bulb to the lower one. Typically the upper and lower bulbs are symmetric so that the hourglass
will measure the same duration regardless of orientation. The specific duration of time a given hourglass measures is
determined by factors including the quantity and coarseness of the particulate matter, the bulb size, and the neck width.

(2)Components Needed

4.4. 4. Projects 83

keyestudio WiKi

Raspberry Main Board*1 RPI GPIO-PCF8591 Shield*1 Red LED Module *1

White LED Module *1 Tilt Sensor*1 F-F DuPont Wires

(3)Knowledge about Component

Tilt Sensor

Tilt sensors (tilt ball switch) allow you to detect orientation or inclination. They are small, inexpensive, low-power and
easy-to-use. If used properly, they will not wear out.

The tilt-switch twig is the equivalent of a button, and is used as a digital input. Inside the tilt switch is a ball that
make contact with the pins when the case is upright. Tilt the case over and the balls don’t touch, thus not making a
connection. When the switch is level it is open, and when tilted, the switch closes.

It can be used for orientation detection, alarm device or others.

Here is the principle of tilt sensor to illustrate how it works:

(4)Connection Diagram

84 Chapter 4. C Language Tutorial

keyestudio WiKi

Red LED Module RPI GPIO-PCF8591 Shield Ball Tilt Sensor RPI GPIO-PCF8591 Shield

S SIO27 S SIO18

V 5V V 5V

G G G GND

White LED Module RPI GPIO-PCF8591 Shield

S SIO17

V 5V

G G

(5)Run Example Code

Input the following commands and press “Enter”:

cd /home/pi/C_code/lesson13_Ball_Tilt_Sensor

gcc Ball_Tilt_Sensor.c -o Ball_Tilt_Sensor -lwiringPi

sudo ./Ball_Tilt_Sensor

(6)Test Results

LED1 gradually brightens and LED2 gradually darkens when placing electronic hourglass. However, when you make
it upside down, LED1 gradually darkens and LED2 gets bright.

Note: Press Ctrl + C on keyboard and exit code running.

(7)Example Code

4.4. 4. Projects 85

keyestudio WiKi

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <wiringPi.h>
#include <softPwm.h>

//define led pin
#define LED1 0 //BCM GPIO 17
#define LED2 2 //BCM GPIO 27
//define Ball Tilt Sensor Pin
#define tiltPin 1 //BCM GPIO 18

int main(void){
int val;
int val1 = 50; //Initial value of LED brightness
int val2 = 50;
if (wiringPiSetup() == -1)
{

printf("Setup GPIO error!\n");
return -1;

}
softPwmCreate(LED1, 0, 100); //Define the pin as PWM output
softPwmCreate(LED2, 0, 100);
while (1)
{

val=digitalRead(tiltPin); //Read the value of the tilt sensor
if(val==0) //upright
{
val1++; //The value of LED1 increases
val2--; //Led2 value reduced
if(val1>=100) //The size of the limit
{
val1 = 100;

}
if(val2<=0) //The size of the limit
{
val2 = 0;

}
softPwmWrite(LED1, val1); //The value after PWM output changes
softPwmWrite(LED2, val2);
delay(50); //Delay, adjust the speed

}
else
{
val1--;
val2++;
if(val1<=0)
{

val1 = 0;
}
if(val2>=100)
{

val2 = 100;
(continues on next page)

86 Chapter 4. C Language Tutorial

keyestudio WiKi

(continued from previous page)

}
softPwmWrite(LED1, val1);
softPwmWrite(LED2, val2);
delay(50);

}
}

return 0;
}

4.4.14 Project 14Collision Alarm

(1)Description

We can use the collision sensor to detect whether crash happens. When the metal plate above the push button switch of
the sensor is knocked, it outputs low level signals; and when the button is open, it remind in high level. In this project,
collision sensor will be applied to control the active buzzer.

(2)Components Needed

Raspberry Main Board*1 RPI GPIO-PCF8591 Shield*1 Active Buzzer Module *1

Collision Sensor*1 F-F DuPont Wires

(3)Knowledge about Component

Collision Sensor:

It is a widely used collision sensor that has a push button switch covered by a mental plate. When the plate is pushed,
the button is pressed, the sensor outputs low level and the LED on it lights; or it outputs high level and the LED reminds
off.

This sensor is often used as a limit switch in a 3D printer.

(4)Connection Diagram

4.4. 4. Projects 87

keyestudio WiKi

Active Buzzer Module RPI GPIO-PCF8591 Shield Collision Sensor RPI GPIO-PCF8591 Shield

S SIO16 S SIO18

V 5V V 5V

G G G G

(5)Run Example Code

Input the following commands and press “Enter”:

cd /home/pi/C_code/lesson14_Crash_Buzzer

gcc Crash_Buzzer.c -o Crash_Buzzer -lwiringPi

sudo ./Crash_Buzzer

(6)Test Results

After running the program, when the metal plate of the push button switch is pressed, the buzzer makes sound and the
terminal prints 0 (low level) or it keeps silent and the terminal prints 1 (high level).

Note: Press Ctrl + C on keyboard and exit code running.

(7)Example Code

#include <wiringPi.h>
#include <stdio.h>
#define crash 1 //crash pin BCM GPIO 18
#define buzzer 27 //buzzer pin BCM GPIO 16
int main()
{
wiringPiSetup();
char val;
{
pinMode(crash,INPUT); //set the crash pin INPUT mode
pinMode(buzzer,OUTPUT);

}

(continues on next page)

88 Chapter 4. C Language Tutorial

keyestudio WiKi

(continued from previous page)

while(1)
{
val=digitalRead(crash); // digital read
printf("val = %d\n", val);
if(val==0)//check if the metal shrapnel is pressed, if yes, turn on the Buzzer
digitalWrite(buzzer,HIGH); //The buzzer made a sound

else
digitalWrite(buzzer,LOW);

}
}

4.4.15 Project 15Line-tracking Sensor

(1)Description

You may have seen that in an experiment a smart car moved along a black line and it didn’t overstep this boundary. How
did it make it? The credit goes to a line-tracking sensor. And in this project, we intend to learn about the line-tracking
sensor.

(2)Components Needed

Raspberry Main Board*1 RPI GPIO-PCF8591
Shield*1

Red LED Module
*1

Line-tracking Sen-
sor*1

F-F DuPont Wires

(3)Knowledge about Component

Line-tracking Sensor

It is an infrared sensor in nature which can detect white and black objects. The working principle of the TCRT5000
pair tube on the sensor is based on the different reflectivity of infrared to colors so as to convert this different strengths
of reflected signals to electric signals. When the sensor detects black objects, it is in high level while when it sensors
white items it is in low level. And the detection altitude is from 0 to 3cm. You can rotate the potentiometer in a bid to
adjust the sensitivity of the line-tracking sensor.

(4)Connection Diagram

4.4. 4. Projects 89

keyestudio WiKi

Red LED Module RPI GPIO-PCF8591 Shield Line-tracking Sensor RPI GPIO-PCF8591 Shield

S SIO27 S SIO18

V 5V V 5V

G G G G

(5)Run Example Code

Input the following commands and press “Enter”:

cd /home/pi/C_code/lesson15_Tracking

gcc Tracking.c -o Tracking -lwiringPi

sudo ./Tracking

(6)Test Results

After running the program, when the line-tracking sensor detects black objects or no objects, then LED reminds off
and the terminal prints 1 (high level); otherwise the LED lights up and the terminal prints 0 (low level).

Note: Press Ctrl + C on keyboard and exit code running.

(7)Example Code

#include <wiringPi.h>
#include <stdio.h>
#define tracking 1 //tracking pin BCM GPIO 18
#define led 2 //led pin BCM GPIO 27
int main()
{
wiringPiSetup();
char val;
{
pinMode(tracking,INPUT); //set the tracking pin INPUT mode
pinMode(led,OUTPUT);

}

while(1)
(continues on next page)

90 Chapter 4. C Language Tutorial

keyestudio WiKi

(continued from previous page)

{
val=digitalRead(tracking); // digital read
printf("val = %d\n", val);
if(val==0)//check if the the white line is detected if yes, turn on the led
digitalWrite(led,HIGH); //The led made a sound

else
digitalWrite(led,LOW);

}
}

4.4.16 Project 16Photo Interrupter Module

(1)Description

In our daily life, we often need to count and take measurements. But how? The combination of light interrupter module
and Raspberry Pi can do the trick. In the project, we will count with the photo interrupter module.

(2)Components Needed

Raspberry Main Board*1 RPI GPIO-PCF8591
Shield*1

White LED Module *1 F-F DuPont Wires

(3)Knowledge about Component

Photo Interrupter Module

It is a module which is equipped with a light emitting elements and light receiving elements aligned facing each other
in a single package. It is based on the principle that the light passing through the U-shaped area will encounter block-
age. Therefore, it is widely used in speed measurements, positioning count, small household appliances, optical limit
switches, target detection and other fields.

If an object constantly passes through the U-shaped area of the photo interrupter module, the signal it outputs will
shows constant changes between high and low levels. Therefore, we can count and measure speed by calculating the
amount of high level and low level occurring.

(4)Connection Diagram

Photo Interrupter Module RPI GPIO-PCF8591 Shield
S SIO18
V 5V
G G

4.4. 4. Projects 91

keyestudio WiKi

(5)Run Example Code

Input the following commands and press “Enter”:

cd/home/pi/C_code/lesson16_Count_Photofracture

gcc Count_Photofracture.c -o Count_Photofracture -lwiringPi

sudo ./Count_Photofracture

(6)Test Results

After running the program, when an object constantly passes through the U-shaped area on the sensor, the terminal
prints numbers and these numbers gradually increase by 1.

Note: Press Ctrl + C on keyboard and exit code running.

(7)Example Code

#include <wiringPi.h>
#include <stdio.h>
#define photofracturePin 1 // photofracture Pin BCM GPIO 18
int main()
{
wiringPiSetup();
int val; //Photofracture variables
int count = 0; //Record the number of photofracture
int flag = 0; //Odd even variable
pinMode(photofracturePin,INPUT);

while(1)
{
val=digitalRead(photofracturePin); //Receive photofracture value
if(val == 0)
{
delay(10);
val=digitalRead(photofracturePin); //Receive photofracture value
if(val == 1)
{
count = count + 1;

(continues on next page)

92 Chapter 4. C Language Tutorial

keyestudio WiKi

(continued from previous page)

printf("count = %d\n",count);
delay(50);

}
}
flag = count % 2; //Remainder 2 ,Even is 0, odd is 1

}
}

4.4.17 Project 17Magnetic Detection

(1)Description

What is the best way to detect a magnet? Use another magnet? Yeah , it can but it is not sensitive enough. You still
need to feel it by yourselves.

Perhaps you can try a hall magnetic sensor which features high sensitivity, quick response, nice temperature perfor-
mance, and high reliability.

In this project, we will try to turn a LED on and off through a hall magnetic sensor.

(2)Components Needed

Raspberry Main Board*1 RPI GPIO-PCF8591
Shield*1

Red LED Module
*1

Hall Magnetic
Sensor*1

F-F DuPont Wires

(3)Knowledge about Component:

Hall Magnetic Sensor

The main component built in the sensor is A3144E, which is an electronic magnetic device and an active one. It uses
magnetic field and Hall effects to achieve the purpose of non-contact control. Since the Hall element itself is a chip in
nature, its working life is theoretically unlimited. The sensor can be used to detect magnetic fields and output digital
signals. It can sense magnetic materials within a detection range of about 3cm. Note that it can only detect the presence
of a magnetic field nearby, but not the strength of the magnetic field.

(4)Connection Diagram

Red LED Module RPI GPIO-PCF8591 Shield Hall Magnetic Sensor RPI GPIO-PCF8591 Shield

S SIO5 S SIO18

V 5V V 5V

G G G G

4.4. 4. Projects 93

keyestudio WiKi

(5)Run Example Code

Input the following commands and press “Enter”:

cd /home/pi/C_code/lesson17_Hall_Magnetic

gcc Hall_Magnetic.c -o Hall_Magnetic -lwiringPi

sudo ./Hall_Magnetic

(6)Test Results

After running the program and placing a magnetic ball around the Hall magnetic sensor, when the sensor detects
magnetic field nearby, the terminal prints “magnetic” and the LED lights up; otherwise, the terminal prints “nonmag-
netic”and the LED stays dark.

Note: Press Ctrl + C on keyboard and exit code running.

(7)Example Code

#include <wiringPi.h>
#include <pcf8591.h>
#include <stdio.h>

#define Hall_pin 1 //hall pin BCM GPIO 18
#define led_pin 21 //LED pin BCM GPIO 5

int main(void)
{
int val = 0;
wiringPiSetup();
pinMode(Hall_pin,INPUT);
pinMode(led_pin,OUTPUT);

while(1)
{

val=digitalRead(Hall_pin);
if(val==1)
{

printf("nonmagnetic\n");
digitalWrite(led_pin,LOW);

}
else

(continues on next page)

94 Chapter 4. C Language Tutorial

keyestudio WiKi

(continued from previous page)

{
printf("magnetic\n");
digitalWrite(led_pin,HIGH);

}
}
}

4.4.18 Project 185V Relay

(1)Description

In daily life, electronic devices are driven by 220V AC and controlled by switches. When connecting switch to 220V
AC directly, people will be in danger once electricity leakage happens. From a safety perspective, we specially designed
this relay module with NO (normally open) and NC (normally closed) terminals. In this lesson, we will learn a special
and easy-to-use switch, which is the relay module. Let’s get started.

(2)Components Needed

Raspberry Main Board*1 RPI GPIO-PCF8591
Shield*1

5V Relay Module *1 F-F DuPont Wires

(3)Knowledge about Component

Relay:

It is an “automatic switch” that uses a small current to control the operation of a large current.

Control input voltage: 5V

Rated load: 5A 250VAC (NO/NC) 5A 24VDC (NO/NC)

Rated load: You can use the 5V voltage of the Raspberry Pi to control a device with a DC voltage of 24V or an AC
voltage of 250V.

(4)Connection Diagram

Relay Module RPI GPIO-PCF8591 Shield
S SIO18
V 5V
G G

4.4. 4. Projects 95

keyestudio WiKi

(5)Run Example Code

Input the following commands and press “Enter”:

cd /home/pi/C_code/lesson18_Relay

gcc Relay.c -o Relay -lwiringPi

sudo ./Relay

(6)Test Results

After running the program, the LED on the relay lights and them dims and repeats this pattern.

Note: Press Ctrl + C on keyboard and exit code running.

(7)Example Code

#include <wiringPi.h>
#include <stdio.h>

#define relayPin 1 //BCM GPIO 18

int main()
{
wiringPiSetup();
pinMode(relayPin,OUTPUT);

while(1)
{

digitalWrite(relayPin,HIGH);
printf("turn on\n");
delay(5000);
digitalWrite(relayPin,LOW);
printf("turn off\n");
delay(1000);

}
}

96 Chapter 4. C Language Tutorial

keyestudio WiKi

4.4.19 Project19Touch-sensitive Alarm

(1)Description

Touch-sensitive alarm is very commonplace in daily life, especially found in home anti-theft and car anti-theft systems.
When someone touches the alarming mental material, the device alarms to warn people. And it is of high sensitivity
and high reliability evidenced by issuing alarm the moment it is touched.

(2)Components Needed

Raspberry Main Board*1 RPI GPIO-PCF8591 Shield*1 Active Buzzer Module *1

Capacitive Touch Module*1 F-F DuPont Wires

(3)Knowledge about Component:

Capacitive Touch Module

It mainly uses touch detection IC and can be found in many electronic devices. It uses the most popular capacitive
sensing technology, just like the smart buttons on your phone. The touching area of this small sensor can feel the touch
of humans and metals by responding with high or low level. It can still detect the touch though covered by a piece
of paper and cloth. The sensitivity reduces with the increase of items between the touch-sensitive area and the object
performing the touch.

The touch detection IC is designed to replace the traditional button with a variable area key, featuring low power
consumption and wide operating voltage.

When the module is powered up, it needs a stabilization time of about 0.5 sec. During this time period, do not touch
the keypad. At this time, all functions are disabled, and self-calibration is always performed. No touching the key, the
recalibration period is about 4.0sec.

Capacitive touch sensors are used in many devices such as digital audio players, computer displays, mobile phones,
mobile devices, tablets and others.

(4)Connection Diagram

4.4. 4. Projects 97

keyestudio WiKi

Active Buzzer Mod-
ule

RPI GPIO-PCF8591
Shield

Capacitive Touch Sen-
sor

RPI GPIO-PCF8591
Shield

S SIO27 S SIO18

V 5V V 5V

G G G G

(5)Run Example Code

Input the following commands and press “Enter”:

cd /home/pi/C_code/lesson19_Touch_Alarm

gcc Touch_Alarm.c -o Touch_Alarm -lwiringPi

sudo ./Touch_Alarm

(6)Test Results

After running the program, when the sensing area on the capacitive touch sensor is touched, the terminal outputs 1 and
the buzzer makes sounds; otherwise, the terminal outputs 0 and the buzzer is in silence.

Note: Press Ctrl + C on keyboard and exit code running.

(7)Example Code

#include <wiringPi.h>
#include <stdio.h>
#define touchPin 1 //BCM GPIO 18
#define buzPin 2 //define buzzer pin BCM GPIO 27

int main()
{
wiringPiSetup();
char val;
{
pinMode(touchPin,INPUT);

(continues on next page)

98 Chapter 4. C Language Tutorial

keyestudio WiKi

(continued from previous page)

pinMode(buzPin,OUTPUT);
}

while(1)
{
val=digitalRead(touchPin);
printf("val = %d\n",val);
if(val==1) //When the touch area is touched
digitalWrite(buzPin,HIGH); //Buzzer turn on
else
digitalWrite(buzPin,LOW); //Buzzer turn off

}
}

4.4.20 Project 20Obstacle Avoidance Sensor

(1)Description

You may have seen that a smart car automatically avoid the obstacles around it. How did it make it? The credit comes
to an infrared obstacle avoidance sensor. And in this project, we intend to learn about this infrared obstacle avoidance
sensor.

(2)Components Needed

Raspberry Main Board*1 RPI GPIO-PCF8591 Shield*1 Active Buzzer Module *1

Red LED Module *1 Infrared Obstacle Avoidance Sen-
sor*1

F-F DuPont Wires

(3)Knowledge about Component

Infrared Obstacle Avoidance Sensor

It is equipped with distance adjustment function and is especially designed for wheeled robots. This sensor has strong
adaptability to ambient light and is of high precision. It has a pair of infrared transmitting and receiving tube.

4.4. 4. Projects 99

keyestudio WiKi

When infrared ray launched by the transmitting tube encounters an obstacle (its reflector), the infrared ray is reflected to
the receiving tube, and the signal terminal outputs 0 (low level); if no objects is detected, the infrared signal decreases
with the increase of distance and finally dies out so the receiving tube receives no signals and the the terminal outputs
1high level). That’s how it determines whether there are obstacles around.

We can adjust the detection distance through the potentiometer knob (effective distance: 240cm, working Voltage:
3.3V-5V).

(4)Connection Diagram

Active Buzzer
Module

RPI GPIO-PCF8591
Shield

Infrared Obstacle Avoidance
Sensor

RPI GPIO-PCF8591
Shield

S SIO27 S SIO18

V 5V V 5V

G G G G

Red LED Module RPI GPIO-PCF8591
Shield

S SIO5

V 5V

G G

100 Chapter 4. C Language Tutorial

keyestudio WiKi

(5)Run Example Code

Input the following commands and press “Enter”:

cd /home/pi/C_code/lesson20_Obstacle_Avoidance

gcc Obstacle_Avoidance.c -o Obstacle_Avoidance -lwiringPi

sudo ./Obstacle_Avoidance

(6)Test Results

After running the program, when the sensor detects any obstacles, the terminal outputs 0 ,the buzzer makes sounds and
the LED keeps flashing; otherwise, the terminal outputs 1, the buzzer utters no sounds and the LED reminds off.

Note: Press Ctrl + C on keyboard and exit code running.

(7)Example Code

#include <wiringPi.h>
#include <stdio.h>

(continues on next page)

4.4. 4. Projects 101

keyestudio WiKi

(continued from previous page)

#define obstaclePin 1 //BCM GPIO 18
#define buzPin 2 //define buzzer pin BCM GPIO 27
#define ledPin 21 //define led pin BCM GPIO 5

int main()
{
wiringPiSetup();
char val;
{
pinMode(obstaclePin,INPUT);
pinMode(buzPin,OUTPUT);
pinMode(ledPin,OUTPUT);
digitalWrite(buzPin,LOW);
digitalWrite(ledPin,LOW);

}

while(1)
{
val=digitalRead(obstaclePin);
printf("val = %d\n",val);
if(val==0) //When the obstacle avoidance is detected
{
digitalWrite(buzPin,HIGH); //Buzzer turn on
digitalWrite(ledPin,HIGH); //LED turn on
delay(100);
digitalWrite(ledPin,LOW); //LED turn off
delay(100);

}
else
{
digitalWrite(buzPin,LOW); //Buzzer turn off
digitalWrite(ledPin,LOW); //LED turn off

}
}

}

4.4.21 Project 21Reed Switch Module

(1)Description

In this project, we will learn to detect whether there is magnetic force around with reed switch sensor and Raspberry Pi.
Actually, we have known how to detect magnetic force with Hall magnetic sensor. Then what’s the difference between
these two sensors? You will have the answer after learning this lesson.

(2)Components Needed

102 Chapter 4. C Language Tutorial

keyestudio WiKi

Raspberry Main Board*1 RPI GPIO-PCF8591
Shield*1

Red LED Module
*1

Reed Switch Mod-
ule*1

F-F DuPont Wires

(3)Knowledge about Component:

Reed Switch Module

The magnetic reed sensor is mainly composed of a magnetic reed switch, which is a mechanical magnetic switch and
also a contact switch, and a passive device.

Its working principle is to use a magnetic field to magnetize the reed so as to control the on and off status of the switch.
When the sensor is exposed to a magnetic field, the two ferromagnetic blades inside the switch pull together and the
switch closes. When the magnetic field is removed, the two blades separate and the switch opens.

However, since the reed switch is a contact switch, it has a limited service life and is easily damaged during transporta-
tion and installation.

The reed switch is applied widely in household appliances, automobile, communication, industrial manufacturing,
health care and security, as well as other electronic devices like door magnet, reed relay and level gauge.

(4)Connection Diagram

Red LED Module RPI GPIO-PCF8591 Shield Reed Switch Module RPI GPIO-PCF8591 Shield

S SIO5 S SIO18

V 5V V 5V

G G G G

4.4. 4. Projects 103

keyestudio WiKi

(5)Run Example Code

Input the following commands and press “Enter”:

cd /home/pi/C_code/lesson21_Reed_Switch

gcc Reed_Switch.c -o Reed_Switch -lwiringPi

sudo ./Reed_Switch

(6)Test Results

After running the program, when the reed switch sensor detects magnetic field nearby, the terminal prints the “0”
detected by the sensor and the LED lights; otherwise, the terminal prints the number 1 and the LED reminds off.

Note: Press Ctrl + C on keyboard and exit code running.

(7)Example Code

#include <wiringPi.h>
#include <pcf8591.h>
#include <stdio.h>

#define reed_pin 1 //reed pin BCM GPIO 18
#define led_pin 21 //LED pin BCM GPIO 5

int main(void)
{
int val = 0;
wiringPiSetup();
pinMode(reed_pin,INPUT);//set reed reedPin INPUT mode
pinMode(led_pin,OUTPUT); //set ledPin OUTPUT mode

while(1)
{

val=digitalRead(reed_pin);
printf("val = %d\n",val);
if(val==0) //when magnetism is detected

digitalWrite(led_pin,HIGH);//led on
else

digitalWrite(led_pin,LOW);//led off
}

}

4.4.22 Project 22Vibration Alarm

(1)Description

In this project, we will make a simply equipped vibration alarm with a vibration sensor and a buzzer.

(2)Components Needed

104 Chapter 4. C Language Tutorial

keyestudio WiKi

Raspberry Main Board*1 RPI GPIO-PCF8591
Shield*1

Active Buzzer
Module *1

Vibration Sen-
sor*1

F-F DuPont Wires

(3)Knowledge about Component

Vibration Sensor

This is a commonly used vibration module/sensor. It has non-directional operation characteristics, which means it can
be triggered to work by forces from any angles. The fully sealed package makes it waterproof and dustproof. And it is
suitable for triggering in small current circuits.

After powering up the sensor, when it is not triggered by any forces, the circuit is openOFF, the signal end outputs high
level and the LED on it remains off; when it is activated by an external force to reach its vibration threshold, the circuit
is closeON, the signal end outputs low level and the LED on it lights up; and when the force exerted dies out, the circuit
returns to openOFF state. The sensitivity of the sensor can be altered by rotating the potentiometer on it.

(4)Connection Diagram

Active Buzzer Module RPI GPIO-PCF8591 Shield Vibration Sensor RPI GPIO-PCF8591 Shield

S SIO5 S SIO18

V 5V V 5V

G G G G

(5)Run Example Code

Input the following commands and press “Enter”:

cd /home/pi/C_code/lesson22_Vibrating_Alarm

gcc Vibrating_Alarm.c -o Vibrating_Alarm -lwiringPi

4.4. 4. Projects 105

keyestudio WiKi

sudo ./Vibrating_Alarm

(6)Test Results

After running the program, when the vibration sensor is triggered, the terminal keeps printing “buzzer ring. buzzer
off”and the buzzer rings constantly; otherwise, the terminal prints “. . . buzzer off”and the buzzer becomes silent.

Note: Press Ctrl + C on keyboard and exit code running.

(7)Example Code

#include <wiringPi.h>
#include <stdio.h>

#define vibPin 1 //vibration pin BCM GPIO 18
#define buzPin 21 //buzzer pin BCM GPIO 5
int buz_status = 0;

void swbuz(void)
{
buz_status = ~buz_status;
digitalWrite(buzPin, buz_status);
if(buz_status == 1)
{

printf("buzzer ring ...");
}
else
{

printf("...buzzer off");
}

}

int main()
{
wiringPiSetup();
pinMode(buzPin, OUTPUT);
pinMode(vibPin,INPUT);
pullUpDnControl(vibPin, PUD_UP);
wiringPiISR(vibPin,INT_EDGE_FALLING,swbuz); //interrupt

while(1)
{
//val=digitalRead(vibPin); //Receive
//printf("value = %d\n", val);

}
}

106 Chapter 4. C Language Tutorial

keyestudio WiKi

4.4.23 Project 23Servo

(1)Description

Relay Module is applied widely, especially for robot like human robots and moving robots. In this lesson, we will learn
how it works.

(2)Components Needed

Raspberry Main Board*1 RPI GPIO-PCF8591
Shield*1

Servo*1 F-F DuPont Wires

(3)Knowledge about Component

Servo:

A location(angle) driver which can rotate a certain angle with high accuracy. It has three external wires which are
brown, red and orange. Brown one is grounded, red one is positive pole of power and orange one is signal wire.

The rotation angle of the servo motor is controlled by regulating the duty cycle of PWM (Pulse-Width Modulation)
signal. The standard cycle of PWM signal is 20ms(50Hz). Theoretically, the width is distributed between 1ms-2ms,
but in fact, it’s between 0.5ms-2.5ms. The width corresponds the rotation angle from 0° to 180°. But note that for
different brand motor, the same signal may have different rotation angle.

(4)Connection Diagram

Servo RPI GPIO-PCF8591 Shield
Orange Wire SIO18
Red Wire 5V
Brown Wire G

4.4. 4. Projects 107

keyestudio WiKi

(5)Run Example Code

Input the following commands and press “Enter”:

cd /home/pi/C_code/lesson23_Relay Module

gcc Relay Module.c -o Relay Module -lwiringPi

sudo ./Relay Module

(6)Test Results

Servo rotates in the range of 0°-180°.

Note: Press Ctrl + C on keyboard and exit code running.

(7)Example Code

#include <wiringPi.h>
#define serPin 1 //servo pin BCM GPIO 18

int main()
{

wiringPiSetup();
pinMode(serPin,OUTPUT);
int i;
for(;;)
{

for(i=0;i<50;i++)
{

digitalWrite(serPin,HIGH);
delayMicroseconds(500); //Pulse width 0.5ms, Angle 0
digitalWrite(serPin,LOW);
delay(20-0.5); //Cycle 20 ms

}

delay(1000);
for(i=0;i<50;i++)
{

digitalWrite(serPin,HIGH);
(continues on next page)

108 Chapter 4. C Language Tutorial

keyestudio WiKi

(continued from previous page)

delayMicroseconds(2500);
digitalWrite(serPin,LOW);
delay(20-2.5);

}
delay(1000);
}
return 0;

}

4.4.24 Project 24Adjust the Brightness of LED

(1)Description

Some of the lamps on market can be adjusted to display different brightness, which gives us better shopping experiences.
And in this project, we will learn how to make this happen.

(2)Components Needed

Raspberry Main Board*1 RPI GPIO-PCF8591
Shield*1

Red LED Module
*1

Rotary Poten-
tiometer Mod-
ule*1

F-F DuPont Wires

(3)Knowledge about Components

PCF8591 A/D converter chip:

It is installed behind the RPI GPIO-PCF8591 shield with voltage resolution of 5V/255 0.01961.

Since the Raspberry Pi itself does not have AD/DA function, an expansion board with this function is required when it
is connected to external analog sensors. And here we use PCF8591 A/D converter with I2C communication.

1. Enable the I2C communication function of the Raspberry Pi as follows:

2. Raspberry Pi does not enable the I2C function by default. Enter sudo raspi-config in the terminal to enter the
Raspberry Pi configuration interface.

Enable the I2C function of Raspberry Pi as follows(Use the up (↑), down (↓), left (←), and right (→) keys on the
keyboard to select the corresponding option, and then press “Enter”):

4.4. 4. Projects 109

keyestudio WiKi

110 Chapter 4. C Language Tutorial

keyestudio WiKi

Find more about I2C:

https://www.nxp.com/docs/en/user-guide/UM10204.pdf

Pin description:

You can find more information,such as the specification of this chip, in the resources link:

https://fs.keyestudio.com/KS3016

From the picture below, it is obvious that the PCF8591 converter is equipped with a AOUT pin and 4 analog inputs
pinsA0~A3

Check the address of the I2C module (PCF8591) connected to the Raspberry Pi, enter the command: i2cdetect -y 1,
and then press “Enter”.

From below picture, it is known that the I2C address is 0x48 .

4.4. 4. Projects 111

https://www.nxp.com/docs/en/user-guide/UM10204.pdf
https://fs.keyestudio.com/KS3016

keyestudio WiKi

The address for reading pins A0~A3 is:

A0 = 0x40 ##A0 —-> port address

A1 = 0x41

A2 = 0x42

A3 = 0x43

The address for analog output pin AOUT is: 0x40, which is 64 when hexadecimal is converted to decimal.

Rotary Potentiometer

It can be viewed as an adjustable resistor with the range from 0~10K.

Therefore when we rotate the potentiometer, we actually change its resistance. We can build a circuit to convert the
changes in the resistance to the changes in voltage. Then input the voltage changes to the GPIO analog input port for
detection through the signal terminal of the module.

(4)Connection Diagram

Red LED Module RPI GPIO-PCF8591 Shield Rotary Potentiometer RPI GPIO-PCF8591 Shield

S SIO11 S SA0

V 5V V 5V

G G G G

112 Chapter 4. C Language Tutorial

keyestudio WiKi

(5)Run Example Code

Input the following commands and press “Enter”:

cd /home/pi/C_code/lesson24_Potentiometer_LED

gcc Potentiometer_LED.c -o Potentiometer_LED -lwiringPi

sudo ./Potentiometer_LED

(6)Test Results

After running the program, the terminal prints the analog value of the rotary potentiometer and the brightness of the
LED changes with the adjustments of the potentiometer.

Note: Press Ctrl + C on keyboard and exit code running.

(7)Example Code

#include <wiringPi.h>
#include <pcf8591.h> //pcf8591 library
#include <softPwm.h>
#include <stdio.h>

#define Address 0x48 //iic address
#define BASE 64 //DAC write address
#define A0 BASE+0 //A0 analogRead address
#define A1 BASE+1 //A1 analogRead address
#define A2 BASE+2
#define A3 BASE+3

#define ledPin 14 //led pin BCM GPIO 11

int main(void)
{

unsigned char value;
wiringPiSetup();
pcf8591Setup(BASE,Address); //Initialize the pcf8591
softPwmCreate(ledPin,0,100);

while(1)
(continues on next page)

4.4. 4. Projects 113

keyestudio WiKi

(continued from previous page)

{
value=analogRead(A0); //read the ADC value of channel 0
softPwmWrite(ledPin,value*100/255); // Mapping to PWM duty cycle
printf("A0:%d\n",value);
analogWrite(BASE,value); //write the DAC value
printf("AOUT:%d\n",value);
delay(100);

}
}

4.4.25 Project 25Photoresistor

(1)Description

Sensors or modules have found wide applications in daily life. For example, some street lights automatically light up
when it is dark and are blocked out when it is bright. But why? Actually it is because of an element called photoresistor
which can make changes with the light intensity. And in this project, we will learn how to make this happen.

(2)Components Needed

Raspberry Main Board*1 RPI GPIO-PCF8591
Shield*1

Red LED Module
*1

Photoresistor Sen-
sor*1

F-F DuPont Wires

(3)Knowledge about Component

Photoresistor

Photoresistor (Photovaristor) is a resistor whose resistance varies according to different incident light strengths. It’s
made based on the photoelectric effect of semiconductor. If the incident light is intense, its resistance reduces; if the
incident light is weak, the resistance increases.

If incident light on a photoresistor exceeds a certain frequency, photons absorbed by the semiconductor give bound
electrons enough energy to jump into the conduction band. The resulting free electrons (and their hole partners) conduct
electricity, thereby lowering resistance.

(4)Connection Diagram

Red LED Module RPI GPIO-PCF8591 Shield Photoresistor Sensor RPI GPIO-PCF8591 Shield

S SIO5 S SA0

V 5V V 5V

G G G G

114 Chapter 4. C Language Tutorial

keyestudio WiKi

(5)Run Example Code

Note: in the experiment, I2C communication is used. We need to check the iic address first(enter commandi2cdetect
-y 1 and press“Enter”. If failed, check the wiring is correct or not. If correct, you need to enable I2C communication
function of Raspberry Pi, project 24 is for your reference.

After enabling the I2C communicationinput the following commands and press “Enter”:

cd /home/pi/C_code/lesson25_Photo_Sensor

gcc Photo_Sensor.c -o Photo_Sensor -lwiringPi

sudo ./Photo_Sensor

(6)Test Results

Terminal prints the value tested by photoresistor. LED will lights up if the ambient environment is dim; otherwise,
LED will be off.

Note: Press Ctrl + C on keyboard and exit code running.

(7)Example Code

#include <wiringPi.h>
#include <pcf8591.h>
#include <stdio.h>

#define Address 0x48
#define BASE 64
#define A0 BASE+0
#define A1 BASE+1
#define A2 BASE+2
#define A3 BASE+3

#define ledPin 21 //led pin BCM GPIO 5

int main(void)
{

unsigned char value;
wiringPiSetup();
pcf8591Setup(BASE,Address);
pinMode(ledPin,OUTPUT);

(continues on next page)

4.4. 4. Projects 115

keyestudio WiKi

(continued from previous page)

while(1)
{

value=analogRead(A0);
printf("A0:%d\n",value);
delay(100);
if(value>100)
digitalWrite(ledPin,HIGH);

else
digitalWrite(ledPin,LOW);

}
}

4.4.26 Project 26Sound-activated Light

(1)Description

You might find the lights automatically light up when you pass them. And they will be off if the surrounding is quiet.
Do you know why?

Actually, it is sound sensor that controls them on and off.

(2)Components Needed:

Raspberry Main Board*1 RPI GPIO-PCF8591
Shield*1

Red LED Module
*1

Analog Sound
Sensor*1

F-F DuPont Wires

(3)Knowledge about Component

Sound Sensor

A sound sensor is defined as a module that detects sound waves through its intensity and converting it to electrical
signals.

The sound sensor has a built-in capacitive electret microphone which is highly sensitive to sound. Sound waves cause
the thin film of the electret to vibrate and then the capacitance changes, thus producing the corresponding changed
voltage. Since the voltage change is extremely weak, it needs to be amplified. So it is converted into a voltage ranging
from 0 to 5V, which is received by data acquisition unit after A/D adapter conversion and then sent to an MCU.

(4)Connection Diagram

116 Chapter 4. C Language Tutorial

keyestudio WiKi

Red LED Module RPI GPIO-PCF8591 Shield Analog Sound Sensor RPI GPIO-PCF8591 Shield

S SIO5 S SA0

V 5V V 5V

G G G G

(5)Run Example Code

Note: in the experiment, I2C communication is used. We need to check the iic address first(enter commandi2cdetect
-y 1 and press“Enter”. If failed, check the wiring is correct or not. If correct, you need to enable I2C communication
function of Raspberry Pi, project 24 is for your reference.

After enabling the I2C communicationinput the following commands and press “Enter”:

cd /home/pi/C_code/lesson26_Sound_Led

gcc Sound_Led.c -o Sound_Led -lwiringPi

sudo ./Sound_Led

(6)Test Results

When you clap your hands suddenly, LED lights up and clap again, LED is off.

Note: Press Ctrl + C on keyboard and exit code running.

(7)Example Code

#include <wiringPi.h>
#include <pcf8591.h>
#include <stdio.h>

#define Address 0x48
#define BASE 64
#define A0 BASE+0
#define A1 BASE+1
#define A2 BASE+2

(continues on next page)

4.4. 4. Projects 117

keyestudio WiKi

(continued from previous page)

#define A3 BASE+3

#define ledPin 21 //led pin //BCM GPIO 5

int count = 0;
int flag = 0;

int main(void)
{

unsigned char value;
wiringPiSetup();
pcf8591Setup(BASE,Address);
pinMode(ledPin,OUTPUT);

while(1)
{

value=analogRead(A0); //Read the value of the sound sensor
printf("A0:%d\n",value);
delay(100);
if(value>80)
{

count = count + 1;
flag = count % 2;

}
if(flag == 1)
{

digitalWrite(ledPin,HIGH);
}

else
{

digitalWrite(ledPin,LOW);
}

}
}

4.4.27 Project 27I2C LCD1602

(1)Description

Liquid crystal display can be used to conduct all kind of experiments and make various DIY items. For example, you
can make a temperature detection device out of a temperature sensor and a LCD and distance measurement equipment
with an ultrasonic module and a LCD. In this project, we will connect a LCD 1602 with Raspberry Pi and use it to
show characters and numbers.

(2)Components Needed

118 Chapter 4. C Language Tutorial

keyestudio WiKi

Raspberry Main Board*1 RPI GPIO-PCF8591
Shield*1

I2C LCD1602 *1 F-F DuPont Wires

(3)Knowledge about Component

LCD1602 LED Display

This I2C LCD 1602 could show the characters or numbers in 16 rows and 2 columns

The following is a monochrome LCD1602 display screen and its pin diagram:

The I2C LCD1602 display integrates I2C interface which can be connected with serial input and parallel output pins
so as to transmit data to the display.

This allows us to operate the LCD1602 with 4 lines.

The IC chip used in this module is PCF8574T (PCF8574AT) and its default IC address 0x27(0x3F). You can also check
the RPI bus on your I2C device address with the command “i2cdetect -y 1”.

(4)Connection Diagram

I2C LCD1602 Module RPI GPIO-PCF8591 Shield
GND GND
VCC 5V
SDA IO2
SCL IO3

4.4. 4. Projects 119

keyestudio WiKi

(5)Run Example Code

Note: in the experiment, I2C communication is used. We need to check the iic address first(enter com-
mandi2cdetect -y 1 and press“Enter”. If failed, check the wiring is correct or not. If correct, you need to enable
I2C communication function of Raspberry Pi, project 24 is for your reference.

After enabling the I2C communicationinput the following commands and press “Enter”:

cd /home/pi/C_code/lesson27_I2CLCD1602

gcc I2CLCD1602.c -o I2CLCD1602 -lwiringPiDev -lwiringPi

sudo ./I2CLCD1602

(6)Test Results

After running the program, the LCD 1602 shows the CPU temperature and the system time of your Raspberry Pi.

120 Chapter 4. C Language Tutorial

keyestudio WiKi

Note: After the program is executed, if you can’t see anything on the display or the display is not clear, try to
slowly turn the blue knob on the back of the LCD1602 to adjust the contrast until the screen can clearly display
the time and temperature.

Note: Press Ctrl + C on keyboard and exit code running.

(7)Example Code

#include <stdlib.h>
#include <stdio.h>
#include <wiringPi.h>
#include <wiringPiI2C.h>
#include <pcf8574.h>
#include <lcd.h>
#include <time.h>

int pcf8574_address = 0x27; // PCF8574T:0x27, PCF8574AT:0x3F
#define BASE 64 // BASE any number above 64
//Define the output pins of the PCF8574, which are directly connected to the LCD1602 pin.
#define RS BASE+0
#define RW BASE+1
#define EN BASE+2
#define LED BASE+3
#define D4 BASE+4
#define D5 BASE+5
#define D6 BASE+6
#define D7 BASE+7

int lcdhd;// used to handle LCD
void printCPUTemperature(){// sub function used to print CPU temperature

FILE *fp;
char str_temp[15];
float CPU_temp;
// CPU temperature data is stored in this directory.
fp=fopen("/sys/class/thermal/thermal_zone0/temp","r");
fgets(str_temp,15,fp); // read file temp
CPU_temp = atof(str_temp)/1000.0; // convert to Celsius degrees
printf("CPU's temperature : %.2f \n",CPU_temp);
lcdPosition(lcdhd,0,0); // set the LCD cursor position to (0,0)
lcdPrintf(lcdhd,"CPU:%.2fC",CPU_temp);// Display CPU temperature on LCD
fclose(fp);

}
void printDataTime(){//used to print system time

time_t rawtime;
struct tm *timeinfo;
time(&rawtime);// get system time
timeinfo = localtime(&rawtime);//convert to local time
printf("%s \n",asctime(timeinfo));
lcdPosition(lcdhd,0,1);// set the LCD cursor position to (0,1)
lcdPrintf(lcdhd,"Time:%02d:%02d:%02d",timeinfo->tm_hour,timeinfo->tm_min,timeinfo->

→˓tm_sec); //Display system time on LCD
}
int detectI2C(int addr){

int _fd = wiringPiI2CSetup (addr);
(continues on next page)

4.4. 4. Projects 121

keyestudio WiKi

(continued from previous page)

if (_fd < 0){
printf("Error address : 0x%x \n",addr);
return 0 ;

}
else{

if(wiringPiI2CWrite(_fd,0) < 0){
printf("Not found device in address 0x%x \n",addr);
return 0;

}
else{

printf("Found device in address 0x%x \n",addr);
return 1 ;

}
}

}
int main(void){

int i;

printf("Program is starting ...\n");

wiringPiSetup();
if(detectI2C(0x27)){

pcf8574_address = 0x27;
}else if(detectI2C(0x3F)){

pcf8574_address = 0x3F;
}else{

printf("No correct I2C address found, \n"
"Please use command 'i2cdetect -y 1' to check the I2C address! \n"
"Program Exit. \n");
return -1;

}
pcf8574Setup(BASE,pcf8574_address);//initialize PCF8574
for(i=0;i<8;i++){

pinMode(BASE+i,OUTPUT); //set PCF8574 port to output mode
}
digitalWrite(LED,HIGH); //turn on LCD backlight
digitalWrite(RW,LOW); //allow writing to LCD
lcdhd = lcdInit(2,16,4,RS,EN,D4,D5,D6,D7,0,0,0,0);//

→˓ initialize LCD and return “handle” used to handle LCD
if(lcdhd == -1){

printf("lcdInit failed !");
return 1;

}
while(1){

printCPUTemperature();//print CPU temperature
printDataTime(); // print system time
delay(1000);

}
return 0;

}

122 Chapter 4. C Language Tutorial

keyestudio WiKi

4.4.28 Project 28Water Level Monitor

(1)Description

In daily life, when there is heavy or even torrential rain, the water level in rivers or reservoirs soars. And when it reaches
a certain water level, it is necessary to open the gates to discharge the flood to solve the hidden safety hazards. But how
to detect the water level in a river or a reservoir? The answer lies in the water level sensor. In this lesson, we will learn
to use this sensor to issue alarms when the water bucket is almost full.

(2)Components Needed:

Raspberry Main Board*1 RPI GPIO-PCF8591 Shield*1 Active Buzzer Module *1

Water Level Sensor*1 F-F DuPont Wires

(3)Knowledge about Component

Water Level Sensor

Our water sensor is easy- to-use, portable and cost-effective, designed to identify and detect water level and water drop.

This sensor measures the volume of water drop and water quantity through an array of traces of exposed parallel wires.

It could convert water content to analog signals, and output analog value could be used by function of application. It
has the features of low consumption as well.

(4)Connection Diagram

Active Buzzer Mod-
ule

RPI GPIO-PCF8591
Shield

Water Level Sen-
sor

RPI GPIO-PCF8591
Shield

S SIO18 S SA0

V 5V V 5V

G G G G

4.4. 4. Projects 123

keyestudio WiKi

(5)Run Example Code

Note: in the experiment, I2C communication is used. We need to check the iic address first(enter commandi2cdetect
-y 1 and press“Enter”. If failed, check the wiring is correct or not. If correct, you need to enable I2C communication
function of Raspberry Pi, project 24 is for your reference.

After enabling the I2C communicationinput the following commands and press “Enter”:

cd /home/pi/C_code/lesson28_Water_Buzzer

gcc Water_Buzzer.c -o Water_Buzzer -lwiringPi

sudo ./Water_Buzzer

(6)Test Results

Buzzer makes a sound when water covering the exposed detection part.

Note: Press Ctrl + C on keyboard and exit code running.

(7)Example Code

#include <wiringPi.h>
#include <pcf8591.h>
#include <stdio.h>

#define Address 0x48
#define BASE 64
#define A0 BASE+0
#define A1 BASE+1
#define A2 BASE+2
#define A3 BASE+3

#define buzPin 1 //buzzer pin BCM GPIO 18

int main(void)
{

unsigned char value;
wiringPiSetup();
pcf8591Setup(BASE,Address);
pinMode(buzPin,OUTPUT);

while(1)
(continues on next page)

124 Chapter 4. C Language Tutorial

keyestudio WiKi

(continued from previous page)

{
value=analogRead(A0); //Read the value of the water sensor
printf("A0:%d\n",value);
delay(100);
if(value>30)
{
digitalWrite(buzPin,HIGH);
}
else
{
digitalWrite(buzPin,LOW);

}
}

}

4.4.29 Project 29Flower-watering Device

(1)Description

The household plants are popular in many communities. But they will die if you forget to water them, how about
making an automatic watering device? In this project, we will learn to detect the soil humidity of your plants with soil
humidity sensor and Raspberry Pi.

(2)Components Needed

Raspberry Main Board*1 RPI GPIO-PCF8591
Shield*1

Soil Humidity Sensor
*1

F-F DuPont Wires

(3)Knowledge about Component

Soil Humidity Sensor

This is a simple soil humidity sensor aims to detect the soil humidity.

If the soil is in lack of water, the analog value output by the sensor will decrease; otherwise, it will increase. If you
use this sensor to make an automatic watering device, it can detect whether your botany is thirsty to prevent it from
withering when you go out.

Using the sensor with controller makes your plant more comfortable and your garden smarter. The soil humidity sensor
module is not as complicated as you might think, and if you need to detect the soil in your project, it will be your best
choice.

(4)Connection Diagram

4.4. 4. Projects 125

keyestudio WiKi

Soil Humidity Sensor RPI GPIO-PCF8591 Shield
S SA0
V 5V
G G

(5)Run Example Code

Note: in the experiment, I2C communication is used. We need to check the iic address first(enter commandi2cdetect
-y 1 and press“Enter”. If failed, check the wiring is correct or not. If correct, you need to enable I2C communication
function of Raspberry Pi, project 24 is for your reference.

After enabling the I2C communicationinput the following commands and press “Enter”:

cd /home/pi/C_code/lesson29_Soil

gcc Soil.c -o Soil -lwiringPi

sudo ./Soil

(6)Test Results

After running the program, when the soil humidity sensor is inserted into the land, the terminal prints the analog value
of the soil humidity.

Note: Press Ctrl + C on keyboard and exit code running.

(7)Example Code

#include <wiringPi.h>
#include <pcf8591.h>
#include <stdio.h>

#define Address 0x48 //address ---> device address
#define BASE 64 //DA converter command
#define A0 BASE+0 //A0 ----> port address
#define A1 BASE+1
#define A2 BASE+2
#define A3 BASE+3

int main(void)
(continues on next page)

126 Chapter 4. C Language Tutorial

keyestudio WiKi

(continued from previous page)

{
unsigned char value;
wiringPiSetup();
pcf8591Setup(BASE,Address); //which port of the device you want to access

while(1)
{

value=analogRead(A0);
printf("A0:%d\n",value);
delay(100);
}

}

4.4.30 Project 30Temperature Alarm

(1)Description

In the frozen winter, farmers tend to heat the greenhouse to make the temperature suitable for vegetables to live so as to
prevent them from freezing to death. And a temperature alarm device is required to avoid overheating. In the project,
we will learn to make such a device.

(2)Components Needed

Raspberry Main Board*1 RPI GPIO-PCF8591
Shield*1

Active Buzzer
Module *1

LM35 Tempera-
ture Sensor*1

F-F DuPont Wires

(3)Knowledge about Component

LM35 Temperature Sensor:

It is widely used temperature sensor whose output voltage proportional to temperature. It outputs 0°at the beginning
since it adopts internal compensation. Its sensitivity is 10mV/℃ and output temperature in the range of 0℃100℃.

Transfer formula: output 0V when 0°, plus 1° each time, output voltage increases 10mV.

Working Voltage is 4-30V;

Accuracy: ±1℃.

Maximum linear error: ±0.5℃;

Quiescent current: 80uA.

(4)Connection Diagram

4.4. 4. Projects 127

keyestudio WiKi

Active Buzzer Mod-
ule

RPI GPIO-PCF8591
Shield

LM35 Temperature Sen-
sor

RPI GPIO-PCF8591
Shield

S SIO18 S SA0

V 5V V 5V

G G G G

(5)Run Example Code

Note: in the experiment, I2C communication is used. We need to check the iic address first(enter commandi2cdetect
-y 1 and press“Enter”. If failed, check the wiring is correct or not. If correct, you need to enable I2C communication
function of Raspberry Pi, project 24 is for your reference.

After enabling the I2C communicationinput the following commands and press “Enter”:

cd /home/pi/C_code/lesson30_LM35

gcc LM35.c -o LM35 -lwiringPi

sudo ./LM35

(6)Test Results

When the programs, the terminal prints the value and temperature; and when the temperature detected is bigger than
20℃, the buzzer rings; otherwise, it makes no sounds.

Note: Press Ctrl + C on keyboard and exit code running.

(7)Example Code

The temperature threshold set in the program is 20 and can be adjusted according to your needs.

#include <wiringPi.h>
#include <pcf8591.h>
#include <stdio.h>

#define Address 0x48
#define BASE 64
#define A0 BASE+0
#define A1 BASE+1

(continues on next page)

128 Chapter 4. C Language Tutorial

keyestudio WiKi

(continued from previous page)

#define A2 BASE+2
#define A3 BASE+3

#define buzPin 1 //buzzer pin BCM GPIO 18

int main(void)
{

unsigned char value;
wiringPiSetup();
pcf8591Setup(BASE,Address);
pinMode(buzPin,OUTPUT);

while(1)
{

value=analogRead(A0); //Read the value of the LM35 temperture sensor
printf("Temp:%d\n",value);
delay(100);
if(value>20)
{
digitalWrite(buzPin,HIGH);
}
else
{
digitalWrite(buzPin,LOW);

}
}

}

4.4.31 Project 31Steam in the Air

(1)Description

The world is infused with air and there are many elements in the air, some of which is useful and some of them is
harmful to physical health. And in this project, we will learn to detect steam in the air with a steam sensor.

(2)Components Needed

Raspberry Main Board*1 RPI GPIO-PCF8591
Shield*1

Steam Sensor *1 F-F DuPont Wires

(3)Knowledge about Component

This is a commonly used steam sensor. Its principle is to detect the amount of water by bare printed parallel lines on
the circuit board. The more the water is, the more wires will be connected. As the conductive contact area increases,

4.4. 4. Projects 129

keyestudio WiKi

the output voltage will gradually rise. It can detect water vapor in the air as well. The steam sensor can be used as a
rain water detector and level switch. When the humidity on the sensor surface surges, the output voltage will increase.

(4)Connection Diagram

Steam Sensor RPI GPIO-PCF8591 Shield
S SA0
V 5V
G G

(5)Run Example Code

Note: in the experiment, I2C communication is used. We need to check the iic address first(enter commandi2cdetect
-y 1 and press“Enter”. If failed, check the wiring is correct or not. If correct, you need to enable I2C communication
function of Raspberry Pi, project 24 is for your reference.

After enabling the I2C communicationinput the following commands and press “Enter”:

cd /home/pi/C_code/lesson31_Water_Vapor

gcc Water_Vapor.c -o Water_Vapor -lwiringPi

sudo ./Water_Vapor

(6)Test Results

After running the program, the terminal displays the steam amount detected by the sensor.

Note: Press Ctrl + C on keyboard and exit code running.

(7)Example Code

#include <wiringPi.h>
#include <pcf8591.h>
#include <stdio.h>

#define Address 0x48
#define BASE 64
#define A0 BASE+0
#define A1 BASE+1
#define A2 BASE+2
#define A3 BASE+3

(continues on next page)

130 Chapter 4. C Language Tutorial

keyestudio WiKi

(continued from previous page)

int main(void)
{

unsigned char value;
wiringPiSetup();
pcf8591Setup(BASE,Address);

while(1)
{

value=analogRead(A0); //Read the value of the water_vapor sensor
printf("water vapor value:%d\n",value); //print data
delay(100);

}
}

4.4.32 Project 32MQ-2 Gas Leakage Alarm

(1)Description

Some families have access to gas, which is composed of CO, CO2, N2, H2 and CH4. CO is one of toxic gases. People
will be in danger if absorbing too much CO. However, we could tackle with this problem over a gas leakage alarm.

Gas MQ-2 leakage alarm detects the presence of a combustible or toxic gas and react by displaying a reading, setting
off an audible or visual alarm.

(2)Components Needed

Raspberry Main Board*1 RPI GPIO-PCF8591
Shield*1

Active Buzzer
Module *1

MQ-2Gas Sen-
sor*1

F-F DuPont Wires

(3)Knowledge about Component

This gas sensor - MQ-2 adapts a gas-sensitive material called tin dioxide (SnO2) which is of low conductivity in clean
air. Therefore, when combustible gases are detected in the air, it becomes more conductive. And the analog value
increases with the increase of the concentration of flammable gases.

Meanwhile, it has high sensitivity to natural gas, liquefied petroleum gas and other smoke, especially to alkanes smoke.

In final analysis, this gas sensor can find application in a wide range with low cost. For example, it can be applied to
gas leak detection devices in homes and factories.

Note

1The sensitivity of the alcohol sensor can be adjusted by rotating the potentiometer on it.

Turning the knob clockwise, the threshold value increases while turning it counterclockwise, the threshold value de-
creases.

4.4. 4. Projects 131

keyestudio WiKi

(2)The sensor may not be able to output stable and accurate data immediately, and it needs to be warmed up for about
1 minute to collect stable data.

(3)Connection Diagram

Active Buzzer Module RPI GPIO-PCF8591 Shield MQ-2Gas Sen-
sor

RPI GPIO-PCF8591 Shield

S SIO18 S SA0

V 5V V 5V

G G G G

(5)Run Example Code

Note: in the experiment, I2C communication is used. We need to check the iic address first(enter commandi2cdetect
-y 1 and press“Enter”. If failed, check the wiring is correct or not. If correct, you need to enable I2C communication
function of Raspberry Pi, project 24 is for your reference.

After enabling the I2C communicationinput the following commands and press “Enter”:

cd /home/pi/C_code/lesson32_Gas_MQ_2

gcc Gas_MQ_2.c -o Gas_MQ_2 -lwiringPi

sudo ./Gas_MQ_2

(6)Test Results

After running the program, the terminal shows the analog gas value detected by the MQ-2 gas sensor. And when the
analog value of noxious gases is bigger than 60 the buzzer issues alarms.

Note: Press Ctrl + C on keyboard and exit code running.

(7)Example Code

132 Chapter 4. C Language Tutorial

keyestudio WiKi

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <wiringPi.h>
#include <pcf8591.h>

#define Address 0x48
#define BASE 64
#define A0 BASE+0
#define A1 BASE+1
#define A2 BASE+2
#define A3 BASE+3

#define buzPin 1 //buzzer pin BCM GPIO 18

int main(void)
{

unsigned char dat;
wiringPiSetup();
pcf8591Setup(BASE,Address);
if (wiringPiSetup() == -1){
exit(1);
}
{

pinMode(buzPin,OUTPUT);
}
while(1){

dat=analogRead(A0);
if(dat>80)

digitalWrite(buzPin,HIGH);
else

digitalWrite(buzPin,LOW);
printf("MQ-2:%d\n",dat);

delay(100);
}

return 0;
}

4.4.33 Project 33Alcohol Tester

(1)Description

The alcohol tester is an instrument that can be used to detect the content of alcohol left in bodies. It can assist traffic
policemen to determine whether a driver drives after consuming alcohol or not or how much alcohol left in his/her
body so as to prevent major traffic accidents. It can also be used in other occasions to detect the alcohol content in
exhaled breath to avoid personal injuries, deaths and major property losses. For example, it can be applied to high-risk
positions prohibiting work after drinking. In this lesson, we will simulate an alcohol tester.

(2)Components Needed

4.4. 4. Projects 133

keyestudio WiKi

Raspberry Main Board*1 RPI GPIO-PCF8591
Shield*1

Active Buzzer
Module *1

MQ- 3 Alcoho
Sensor*1

F-F DuPont Wires

(3)Knowledge of Component

MQ-3 Alcohol Sensor

This analog gas sensor - MQ3 adapts a gas-sensitive material called tin dioxide(SnO2) which is of low conductivity in
clean air. Therefore, when there is alcohol vapor detected, its conductivity increases with the increase of the alcohol
vapor concentration and it outputs signals (digital and analog signals). The higher the alcohol concentration it senses,
the greater the analog value the terminal outputs.

Note: the sensitivity of the alcohol sensor can be adjusted by rotating the potentiometer on it.

Please note that the sensor may not be able to output stable and accurate data immediately, and it needs to be
warmed up for about 1 minute to collect stable data.

(4)Connection Diagram

Active Buzzer Mod-
ule

RPI GPIO-PCF8591
Shield

MQ-3Alcohol Sen-
sor

RPI GPIO-PCF8591
Shield

S SIO18 S SA0

V 5V V 5V

G G G G

134 Chapter 4. C Language Tutorial

keyestudio WiKi

(5)Run Example Code

Note: in the experiment, I2C communication is used. We need to check the iic address first(enter commandi2cdetect
-y 1 and press“Enter”. If failed, check the wiring is correct or not. If correct, you need to enable I2C communication
function of Raspberry Pi, project 24 is for your reference.

After enabling the I2C communicationinput the following commands and press “Enter”:

cd /home/pi/C_code/lesson33_Alcohol_MQ_3

gcc Alcohol_MQ_3.c -o Alcohol_MQ_3 -lwiringPi

sudo ./Alcohol_MQ_3

(6)Test Results

After running the program, the terminal displays the analog alcohol value in the air detected by the MQ-3 alcohol
sensor. And when the analog value is bigger that 80, the buzzer make a sound; otherwise, it reminds silent.

Note: Press Ctrl + C on keyboard and exit code running.

(7)Example Code

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <wiringPi.h>
#include <pcf8591.h>

#define Address 0x48
#define BASE 64
#define A0 BASE+0
#define A1 BASE+1
#define A2 BASE+2
#define A3 BASE+3

#define buzPin 1 //buzzer pin BCM GPIO 18

int main(void)
{

unsigned char dat;
wiringPiSetup();

(continues on next page)

4.4. 4. Projects 135

keyestudio WiKi

(continued from previous page)

pcf8591Setup(BASE,Address);
if (wiringPiSetup() == -1){
exit(1);
}
{

pinMode(buzPin,OUTPUT);
}
while(1){

dat=analogRead(A0);
if(dat>80)

digitalWrite(buzPin,HIGH);
else

digitalWrite(buzPin,LOW);
printf("MQ-3:%d\n",dat);

delay(100);
}

return 0;
}

4.4.34 Project 34Joystick Module

(1)Description

Many a people play games with gamepad. But do you know who it work?

Let’s learn about it.

(2)Components Needed

Raspberry Main Board*1 RPI GPIO-PCF8591
Shield*1

Joystick Module*1 F-F DuPont Wires

(3)Knowledge about Component

Joystick Module

This is a joystick very similar to the ‘analog’ joysticks on PS2 (PlayStation 2) controllers. It is a self-centering spring
loaded joystick, meaning when you release the joystick it will center itself. It also contains a comfortable cup-type
knob/cap which gives the feel of a thumb-stick.

It has three signal pins which are connected GND, VCC and signal endB, X, Y). The X pin is X-axis (left to right), the
Y pin is Y-axis (front and back) and signal B end is Z-axis(usually used as digital port and pushbutton).

VCC is connected to V/VCC3.3/5Vof MCU, GND to G/GND of MCU and the voltage is around 1.65V/2.5V in initial
status.

136 Chapter 4. C Language Tutorial

keyestudio WiKi

X axis gives readout of the joystick in the horizontal direction (X-coordinate) i.e. how far left and right the joystick is
pushed.

(4)Connection Diagram

Joystick Module RPI GPIO-PCF8591 Shield
Y SA1
X SA0
B S(IO26)
V 5V
G G

(5)Run Example Code

Note: in the experiment, I2C communication is used. We need to check the iic address first(enter commandi2cdetect
-y 1 and press“Enter”. If failed, check the wiring is correct or not. If correct, you need to enable I2C communication
function of Raspberry Pi, project 24 is for your reference.

After enabling the I2C communicationinput the following commands and press “Enter”:

cd /home/pi/C_code/lesson34_Joystick

gcc Joystick.c -o Joystick -lwiringPi

sudo ./Joystick

(6)Test Results

Rotate Joystick , terminal will show the responding data change and press it,“The key is pressed”is displayed in the
terminal.

Note: Press Ctrl + C on keyboard and exit code running.

(7)Example Code

#include <wiringPi.h>
#include <pcf8591.h>
#include <stdio.h>

#define Address 0x48
(continues on next page)

4.4. 4. Projects 137

keyestudio WiKi

(continued from previous page)

#define BASE 64
#define A0 BASE+0
#define A1 BASE+1
#define A2 BASE+2
#define A3 BASE+3

#define btnPin 25 //GPIO 26

int main(void)
{
unsigned char x_val;
unsigned char y_val;
unsigned char z_val;
wiringPiSetup();
pcf8591Setup(BASE,Address);
pinMode(25,INPUT);

while(1)
{

x_val=analogRead(A0); //read x
y_val=analogRead(A1); //read y
z_val=digitalRead(25); //read z, button
printf(" x:%d y:%d z:%d\n", x_val,y_val,z_val);
if(z_val==1)
printf("The key is presed!\n");
delay(100);

}
}

4.4.35 Project 35Ultrasonic Sensor

(1)Description

An ultrasonic sensor is an electronic device that measures the distance of a target object by emitting ultrasonic sound
waves, and converts the reflected sound into an electrical signal.

(2)Components Needed

Raspberry Main Board*1 RPI GPIO-PCF8591
Shield*1

Ultrasonic Module*1 F-F DuPont Wires

(3)Knowledge about Component

138 Chapter 4. C Language Tutorial

keyestudio WiKi

The ultrasonic module will emit the ultrasonic waves after trigger signal. When the ultrasonic waves encounter the
object and are reflected back, the module outputs an echo signal, so it can determine the distance of object from the
time difference between trigger signal and echo signal.

The t is the time that emitting signal meets obstacle and returns.

and the propagation speed of sound in the air is about 343m/s, therefore, distance = speed * time, because the ultrasonic
wave emits and comes back, which is 2 times of distance, so it needs to be divided by 2, the distance measured by
ultrasonic wave = (speed * time)/2

Use method and timing chart of ultrasonic module:

1. Setting the delay time of Trig pin of SR04 to 10s at least, which can trigger it to detect distance.

2. 2. After triggering, the module will automatically send eight 40KHz ultrasonic pulses and detect whether there
is a signal return. This step will be completed automatically by the module.

3. If the signal returns, the Echo pin will output a high level, and the duration of the high level is the time from the
transmission of the ultrasonic wave to the return.

(4)Connection Diagram

Ultrasonic Module RPI GPIO-PCF8591 Shield
Vcc 5V
Trig S(IO23)
Echo S(IO24)
Gnd GND

4.4. 4. Projects 139

keyestudio WiKi

(5)Run Example Code

Input the following commands and press “Enter”:

cd /home/pi/C_code/lesson35_Ultrasonic

gcc Ultrasonic.c -o Ultrasonic -lwiringPi

sudo ./Ultrasonic

(6)Test Results

Terminal prints the detected distance, unit is cm.

Note: Press Ctrl + C on keyboard and exit code running.

(7)Example Code

#include <wiringPi.h>
#include <stdio.h>
#include <sys/time.h> //Import the time system header file

//define the pin
#define Trig 4 //BCM GPIO 23
#define Echo 5 //BCM GPIO 24

//set pin mode
void ultraInit(void)
{

pinMode(Echo, INPUT);
pinMode(Trig, OUTPUT);

}

//Write programs based on sequence diagrams
float disMeasure(void)
{

struct timeval tv1; //Create the Timeval structure tv1
struct timeval tv2; //Create the Timeval structure tv2

(continues on next page)

140 Chapter 4. C Language Tutorial

keyestudio WiKi

(continued from previous page)

long start, stop;
float dis;

digitalWrite(Trig, LOW);
delayMicroseconds(2);

digitalWrite(Trig, HIGH);
delayMicroseconds(10);

digitalWrite(Trig, LOW);

while(!(digitalRead(Echo) == 1)); //Wait for the low level received by the Echo␣
→˓pin to pass

gettimeofday(&tv1, NULL); //function gettimeofday, The time it took the system␣
→˓to get here

while(!(digitalRead(Echo) == 0)); //Wait for the high level received by the␣
→˓Echo pin to pass

gettimeofday(&tv2, NULL); //function gettimeofday, The time it took the system␣
→˓to get here

//Tv1.tv_sec is the seconds obtained, tv1.TV_USec is the subtlety obtained
//Calculate the first time

start = tv1.tv_sec * 1000000 + tv1.tv_usec;

//Calculate the second time
stop = tv2.tv_sec * 1000000 + tv2.tv_usec;

//stop - start , the time difference is the high level time acquired by the echo pin
//34000cm/s, speed of sound
//Calculate the distance measured(cm)

dis = (float)(stop - start) / 1000000 * 34000 / 2;

return dis;
}

int main(void)
{

float dis;

if(wiringPiSetup() == -1){ //when initialize wiring failed,print messageto screen
printf("setup wiringPi failed !");
return 1;

}

ultraInit();

while(1){
dis = disMeasure();
printf("distance = %0.2f cm\n",dis);
delay(100);

}

(continues on next page)

4.4. 4. Projects 141

keyestudio WiKi

(continued from previous page)

return 0;
}

linkhttps://pubs.opengroup.org/onlinepubs/9699919799/basedefs/sys_time.h.html

4.4.36 Project 36 Light Intensity Detection

(1)Description

This project is a little bit similar to the one involved the photoresistor sensor. But this time we will use a TEMT6000
ambient light sensor which has better sensitivity. Now, let’s learn how to use this sensor to detect light intensity with
Raspberry Pi.

(2)Components Needed

Raspberry Main Board*1 RPI GPIO-PCF8591
Shield*1

TEMT6000 Ambient
Light Sensor*1

F-F DuPont Wires

(3)Knowledge about Component

TEMT6000 Ambient Light Sensor

This module is mainly composed of a highly sensitive visible photocell (NPN type) triode, which can magnify the
captured tiny light illumination changes by about 100 times, and is easily recognized by the microcontroller for AD
conversion.

And the light intensity is directly proportional to current flowing through. Therefore, it is easy to figure out the light
intensity as long as its voltage is known.

Its response to visible light illumination is similar to that of the human eye, so that can detect the intensity of ambient
light.

(4)Connection Diagram

TEMT6000 Ambient Light Sensor RPI GPIO-PCF8591 Shield
S S(A0)
V 5V
G G

142 Chapter 4. C Language Tutorial

https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/sys_time.h.html

keyestudio WiKi

(5)Run Example Code

Note: in the experiment, I2C communication is used. We need to check the iic address first(enter commandi2cdetect
-y 1 and press“Enter”. If failed, check the wiring is correct or not. If correct, you need to enable I2C communication
function of Raspberry Pi, project 24 is for your reference.

After enabling the I2C communicationinput the following commands and press “Enter”:

cd /home/pi/C_code/lesson36_TEMT6000_Ambient_Light

gcc TEMT6000_Ambient_Light.c -o TEMT6000_Ambient_Light -lwiringPi

sudo ./TEMT6000_Ambient_Light

(6)Test Results

After running the program, the terminal displays the light intensity value detected by the sensor; and the stronger the
light, the bigger the analog value.

Note: Press Ctrl + C on keyboard and exit code running.

(7)Example Code

#include <wiringPi.h>
#include <pcf8591.h>
#include <stdio.h>

#define Address 0x48
#define BASE 64
#define A0 BASE+0
#define A1 BASE+1
#define A2 BASE+2
#define A3 BASE+3

int main(void)
{

unsigned char value;
wiringPiSetup();
pcf8591Setup(BASE,Address);

while(1)
(continues on next page)

4.4. 4. Projects 143

keyestudio WiKi

(continued from previous page)

{
value=analogRead(A0); //Read the value of the TEMT6000 Ambient Light sensor
printf("Ambient Light:%d\n",value); //print data
delay(100);

}
}

4.4.37 Project 37Pressure Measurement

(1)Description

In previous projects, we have learned how to use different sensors to obtain external information about temperature,
light, sound ,gas and others. Now, let’s move to detect pressure with a thin-film pressure sensor and Raspberry Pi.

(2)Components Needed:

Raspberry Main Board*1 RPI GPIO-PCF8591
Shield*1

Thin-film Pressure
Sensor*1

F-F DuPont Wires

(3)Connection Diagram

Thin-film Pressure Sensor RPI GPIO-PCF8591 Shield
S S(A0)
V 5V
G G

144 Chapter 4. C Language Tutorial

keyestudio WiKi

(4)Knowledge about Component

Thin-film Pressure Sensor

This sensor adopts the flexible Nano pressure-sensitive material with an ultra-thin film pad. It has the functions of
water-proof and pressure detection.

When the sensor detects the external pressure, the resistance of sensor will make a change. So, we can design a circuit
to convert the pressure signal that senses pressure changes into the corresponding electric signal outputs.

In this way, we can know the conditions of pressure changes by detecting the signal changes.

(5)Run Example Code

Note: in the experiment, I2C communication is used. We need to check the iic address first(enter commandi2cdetect
-y 1 and press“Enter”. If failed, check the wiring is correct or not. If correct, you need to enable I2C communication
function of Raspberry Pi, project 24 is for your reference.

After enabling the I2C communicationinput the following commands and press “Enter”:

cd /home/pi/C_code/lesson37_Pressure_Transducer

gcc Pressure_Transducer.c -o Pressure_Transducer -lwiringPi

sudo ./Pressure_Transducer

(6)Test Results

After running the program, the terminal prints the value of the external pressure detected by the thin-film pressure
sensor and the value increases with the increase of the pressure detected and reduces with the decrease of the pressure.

Note: Press Ctrl + C on keyboard and exit code running.

(7)Example Code

#include <wiringPi.h>
#include <pcf8591.h>
#include <stdio.h>

#define Address 0x48
#define BASE 64
#define A0 BASE+0
#define A1 BASE+1
#define A2 BASE+2
#define A3 BASE+3

int main(void)
{

unsigned char value;
wiringPiSetup();
pcf8591Setup(BASE,Address);

while(1)
{

value=analogRead(A0); //Read the value of the pressure sensor
printf("pressure value:%d\n",value); //print data
delay(100);

}
}

4.4. 4. Projects 145

keyestudio WiKi

4.4.38 Project 38Temperature Detection

(1)Description

Thermistor is a kind of resistor whose resistance varies with temperature. We can use this characteristics to make
thermometers.

(2)Components Needed

Raspberry Main Board*1 RPI GPIO-PCF8591
Shield*1

Analog Temperature
Sensor*1

F-F DuPont Wires

(3)Knowledge about Component

Analog Temperature Sensor

The main part of this sensor is a thermistor which is quite sensitive to temperature. When it senses the changes of
temperature, it makes changes in its resistance. This function of it can be used to detect temperature. Therefore, it has
found applications in gardening, home alarm systems and other devices.

The NTC-MF52AT thermistor of 10K (P1) S and resistor R1 of 4.7K are connected in series. The resistance value of
the thermistor alters with temperature changes.

Calculation of NTC thermistor:

The calculation formula of the forNTC thermistor is:

Rt = R*EXP[B*(1/T1-1/T2)]

Among them, T1 and T2 refer to degrees, which is the temperature in Kelvin;

Rt is the resistance of the thermistor at temperature T1;

R is the nominal resistance of the thermistor at normal temperature T2, and the resistance of the 10K thermistor at
25°C is 10K (that is, R=10K); T2 = (273.15+ 25);

EXP[n] represents en (e to the nth power);

146 Chapter 4. C Language Tutorial

keyestudio WiKi

The value of B is an important parameter of thermistor and B=3950.

We can use the value measured by the ADC converter to get the resistance value of the thermistor, and then use the
formula to get the temperature value. Therefore, the temperature formula can be derived as T1=1/(ln(Rt/R)/B+1/T2),
where ln can be converted to log, that is, T1=1/(log(Rt/R)/B+1 /T2).

The corresponding Celsius temperature is t=T1-273.15, and the deviation is ±0.5.

(4)Connection Diagram

Analog Temperature Sensor RPI GPIO-PCF8591 Shield
S S(A0)
V 5V
G G

(5)Run Example Code

Note: in the experiment, I2C communication is used. We need to check the iic address first(enter commandi2cdetect
-y 1 and press“Enter”. If failed, check the wiring is correct or not. If correct, you need to enable I2C communication
function of Raspberry Pi, project 24 is for your reference.

After enabling the I2C communicationinput the following commands and press “Enter”:

cd /home/pi/C_code/lesson38_Analog_Temperature

gcc Analog_Temperature.c -o Analog_Temperature -lwiringPi -lm

sudo ./Analog_Temperature

(6)Test Results

After running the program, the terminal prints the ADC value of the analog temperature sensor, voltage and temperature.

Note: Press Ctrl + C on keyboard and exit code running.

(7)Example Code

#include <wiringPi.h>
#include <stdio.h>
#include <pcf8591.h>
#include <math.h>

(continues on next page)

4.4. 4. Projects 147

keyestudio WiKi

(continued from previous page)

#define Address 0x48
#define BASE 64
#define A0 BASE+0
#define A1 BASE+1
#define A2 BASE+2
#define A3 BASE+3

int main(void){
wiringPiSetup();
pcf8591Setup(BASE,Address);

while(1){
int value = analogRead(A0); //read analog value A0 pin
float voltage = (float)value / 255.0 * 5.0; // calculate voltage
float Rt = 4.7 * (5.0 / voltage) - 4.7 ; //calculate resistance value of␣

→˓thermistor, 5.0 * (R / (Rt + R)) = voltage,>>>Rt = R * (5.0 / voltage) - R
float tempK = 1/(1/(273.15 + 25) + log(Rt/4.7)/3950.0); //calculate temperature␣

→˓(Kelvin)
float tempC = tempK - 273.15; //calculate temperature (Celsius)
printf("ADC value : %d ,\tVoltage : %.2fV, \tTemperature : %.2fC\n",value,

→˓voltage,tempC);
delay(100);

}
return(0);

}

4.4.39 Project 39: Ultraviolet Light Detection

(1)Description

Ultraviolet light is a kind of physical optics. The main source of ultraviolet light in nature is the sun. Most of the
ultraviolet rays emitted by the sun are absorbed by the ozone in the atmosphere, and a very small part will be irradiated
on the earth. We can use an ultraviolet sensor to detect the amount of ultraviolet rays in the sun.

(2)Components Needed

Raspberry Main Board*1 RPI GPIO-PCF8591
Shield*1

GUVA-S12SD Ultravi-
olet Sensor*1

F-F DuPont Wires

(3)Knowledge about Component:

GUVA-S12SD Ultraviolet Sensor

148 Chapter 4. C Language Tutorial

keyestudio WiKi

It is used for ultraviolet light detection. For example, it can be applied to detect the UV index of some smart wearable
devices including watches, smart phones and others and of some outdoor equipment. It also can find applications in
detecting the intensity of ultraviolet light and serve as an ultraviolet flame detector when disinfecting things.

The output current of the GUVA-S12SD ultraviolet sensor is proportional to the light intensity, and the product output
has a very high consistency. The sensor has a specific spectral response. It mainly for the measurement of ultraviolet
rays in the sun and the intensity of UVA lamps, and is particularly suitable for UVI detection.

(4)Connection Diagram

GUVA-S12SD Ultraviolet Sensor RPI GPIO-PCF8591 Shield
S S(A0)
V 5V
G G

(5)Run Example Code

Note: in the experiment, I2C communication is used. We need to check the iic address first(enter commandi2cdetect
-y 1 and press“Enter”. If failed, check the wiring is correct or not. If correct, you need to enable I2C communication
function of Raspberry Pi, project 24 is for your reference.

After enabling the I2C communicationinput the following commands and press “Enter”:

cd /home/pi/C_code/lesson39_Ultraviolet_Ray

gcc Ultraviolet_Ray.c -o Ultraviolet_Ray -lwiringPi

sudo ./Ultraviolet_Ray

(5)Test Results

After running the program, pointing an ultraviolet pen (we don’t provide it) emitting ultraviolet rays at a sensor or
putting it under the sun, the terminal prints the ultraviolet intensity value.

Note: Press Ctrl + C on keyboard and exit code running.

(7)Example Code

#include <wiringPi.h>
#include <pcf8591.h>
#include <stdio.h>

(continues on next page)

4.4. 4. Projects 149

keyestudio WiKi

(continued from previous page)

#define Address 0x48 //address ---> device address
#define BASE 64 //DA converter command
#define A0 BASE+0 //A0 ----> port address
#define A1 BASE+1
#define A2 BASE+2
#define A3 BASE+3

int main(void)
{

unsigned char value;
wiringPiSetup();
pcf8591Setup(BASE,Address); //which port of the device you want to access

while(1)
{

value=analogRead(A0);
printf("ultraviolet intensity:%d\n",value);
delay(100);
}

}

150 Chapter 4. C Language Tutorial

CHAPTER

FIVE

PROCESSING JAVA TUTORIAL

We recommend you to learn the Python and C language tutorials about this kit firstly. And we have demonstrated how
to install Raspberry Pi OS, fix IP address and conduct remote login.

5.1 1.Preparations

5.1.1 (1)Install processing IDE

1.Processing Websitehttps://pi.processing.org/get-started/

2. Download processing IDE installation package:

https://github.com/processing/processing/releases/download/processing-0269-3.5.3/processing-3.5.
3-linux-armv6hf.tgz

You could download zip file to the download folder of Raspberry Pi. Equally, you could save it into Downloads folder
in the windows system, as shown below:

151

https://pi.processing.org/get-started/
https://github.com/processing/processing/releases/download/processing-0269-3.5.3/processing-3.5.3-linux-armv6hf.tgz
https://github.com/processing/processing/releases/download/processing-0269-3.5.3/processing-3.5.3-linux-armv6hf.tgz

keyestudio WiKi

Unzip installation package and click it and select Extract Here

152 Chapter 5. Processing JAVA Tutorial

keyestudio WiKi

Then right-click to unzip folder and choose Open in Terminal;

5.1. 1.Preparations 153

keyestudio WiKi

Input installation command: sudo ./install.sh and press“Enter”;

154 Chapter 5. Processing JAVA Tutorial

keyestudio WiKi

After the download, a sketchbook folder generates in the pi folder, which is default route of saving code;

Then click Programming→Processing IDE

Input processing in terminal to open processing IDE, as shown below:

5.1. 1.Preparations 155

keyestudio WiKi

Its interface is shown below:

156 Chapter 5. Processing JAVA Tutorial

keyestudio WiKi

5.1.2 (2)Use Processing IDE

Enter the code in the editor

ellipse(50, 50 , 60, 100);

This code refers to“drawing an oval with a center 50 pixels from left to bottom, 50 pixels from top to bottom, width 60
and height 100 pixels.”

Click the “Run” button (the triangle button in the toolbar) .

5.1. 1.Preparations 157

keyestudio WiKi

You will view an oval if all content is correct, as shown below:

Click to stop or close, the program will stop running.

A notification will appear if the input code is wrong. Don’t worry about it. Check the code immediately. numbers are
separated with a comma and enclosed in parentheses and each line should end with a semicolon. The wrong code is as
follows:

158 Chapter 5. Processing JAVA Tutorial

keyestudio WiKi

You could set up language mode and others in below page. Except language, others are all default settings.

5.1. 1.Preparations 159

keyestudio WiKi

160 Chapter 5. Processing JAVA Tutorial

keyestudio WiKi

5.1.3 (3)Copy Example Code to Raspberry Pi

Copy the Processing-Code.zip to sketchbook folder and unzip it, as shown below:

5.1. 1.Preparations 161

keyestudio WiKi

162 Chapter 5. Processing JAVA Tutorial

keyestudio WiKi

5.2 2.Projects

5.2.1 Project 1Print Hello World

(1)Run Example Code

Input the following command and press“Enter”. Then Processing IDE will boot, click“RUN”:

processing /home/pi/sketchbook/Processing_Code/sketch_1_hello_world/sketch_1_hello_world.pde

Another method for your reference as below:

Click to find out the route

/home/pi/sketchbook/Processing_Code/sketch_1_hello_worldthen right-click sketch_1_hello_world.pde to select Pro-
cessing IDE.

5.2. 2.Projects 163

keyestudio WiKi

(2)Test Results

Input“hello world”in the control window and hello world”appears in graphical display window, as shown below:

(3)Example Code

164 Chapter 5. Processing JAVA Tutorial

keyestudio WiKi

void setup() { //execute only once when the program starts running
size(480, 200); //set window size
textSize(48); //set the font size
frameRate(1); //To set the refresh rate,

→˓ set the number of flushes per second for the draw () function
}
void draw() { //every frame is called once
background(255); //full screen filled with solid color
fill(1); //set the fill color of the words
text("hello world!", 75, 120); //draw text,

→˓ the lower left corner of the text coordinates are (75,120)
println("hello world!"); //Output in the console window

}

5.2.2 Project 2LED Blinks

(1)Description

Let’s start from a rather basic and simple experiment—-LED Blinks

(2)Components Needed:

Raspberry Main
Board*1

RPI GPIO-PCF8591 Shield*1 White LED Module
*1

F-F DuPont Wires

(3) Knowledge about Component :

The white LED module:

It is a commonly used LED module. It is a F5 LED with white appearance and white light display. During experiments,
when the GND and VCC on the module are powered up and the signal end S is at high level ,the white LED is on while
when the S is at low level, the LED is off.

This module is compatible with various microcontrollers, including the Arduino series.

(4)Connection Diagram

White LED Module RPI GPIO-PCF8591 Shield
S SIO18
V 5V
G G

5.2. 2.Projects 165

keyestudio WiKi

(5)Working Principle

According to the diagram above we can find out that the positive pole(V) is connected to 5V, negative pole(G) to GND
and signal terminal(S) to the pin of GPIO18. When GPIO18 outputs high level, LED is on; when it outputs low level,
LED is off.

(6)Run Example Code

Input the following command, press“Enter”and click“RUN”on Processing IDE:

processing /home/pi/sketchbook/Processing_Code/sketch_2_LED_Blinking/sketch_2_LED_Blinking.pde

(7)Test Results

LED starts blinking and the background of display window varies with the state of LED, as shown below:

(8)Example Code

import processing.io.*;

int ledPin = 18; //define ledPin
boolean ledState = false; //define ledState

void setup() {
(continues on next page)

166 Chapter 5. Processing JAVA Tutorial

keyestudio WiKi

(continued from previous page)

size(100, 100); //Set the size of the graphics display box to 100*100 pixels
frameRate(1); //set frame rate
GPIO.pinMode(ledPin, GPIO.OUTPUT); //set the ledPin to output mode

}

void draw() {
ledState = !ledState; //Turn back the LED light
if (ledState) {

GPIO.digitalWrite(ledPin, GPIO.HIGH); //led on
background(255, 0, 0); //set the fill color of led on

} else {
GPIO.digitalWrite(ledPin, GPIO.LOW); //led off
background(102); //set the fill color of led off

}
}

The function of the above code is included in Processing Software. You could look through detailed information and
reference by clicking“Help”→“Reference”, as shown below:

5.2. 2.Projects 167

keyestudio WiKi

Then the following page shows;

168 Chapter 5. Processing JAVA Tutorial

keyestudio WiKi

Equally, you could navigate the official websitehttp://processing.org/reference

5.2.3 Project 3Mouse-controlled LED

(1)Description

In this program, we will control the status of LED by mouse. The components, connection and schematic diagrams are
same as the lesson 2.

(2)Working Principle:

Left-click the display window, LED is on; right-click the display window, LED is off.

(3) Run Example Code

Input the following command, press“Enter”and click“RUN”on Processing IDE:

processing /home/pi/sketchbook/Processing_Code/sketch_3_mouse_led/sketch_3_mouse_led.pde

(4)Test Results

After running example code, LED is off and display window is in gray color. Left-click the gray area, LED is on and
window turns into red; right-click display window, LED is off and its background color is gray-black as shown below:

5.2. 2.Projects 169

http://processing.org/reference

keyestudio WiKi

(5)Example Code

import processing.io.*;

int ledPin = 18; //define ledPin

void setup()
{
size(100, 100);
GPIO.pinMode(ledPin, GPIO.OUTPUT);

}

void draw() {
if (mousePressed && (mouseButton == LEFT)) {
background(255, 0, 0); //set the fill color of led on
GPIO.digitalWrite(ledPin, GPIO.HIGH); //led on

}
if (mousePressed && (mouseButton == RIGHT)) {
background(102); //set the fill color of led off
GPIO.digitalWrite(ledPin, GPIO.LOW); //led off

}
}

5.2.4 Project 4Breathing LED

(1)Description

A“breathing LED” is a phenomenon where an LED’s brightness smoothly changes from dark to bright and back to
dark, continuing to do so and giving the illusion of an LED“breathing.” This phenomenon is similar to a lung breathing
in and out. So how to control LED’s brightness? We need to take advantage of PWM.

(2)Components Needed

170 Chapter 5. Processing JAVA Tutorial

keyestudio WiKi

Raspberry Main
Board*1

RPI GPIO-PCF8591 Shield*1 Red LED Mod-
ule*1

F-F DuPont Wires

(3)Working Principle

We use the PWM output of GPIO, PWM outputs analog signals and output value is 0~100 which is equivalent to output
voltage 0~3.3V from GPIO port.

According to Ohm’s law: U/R = I, the resistance is 220, and the value of voltage U changes, so does the value of current
I, which can control the brightness of the LED lamp.

PWM (Pulse Width Modulation) is the control of the analog circuit through the digital output of microcomputer and a
method that makes digital coding on analog signal levels.

It sends square waves with certain frequency through digital pins, that is, high level and low level output alternately for
a period of time. Total time of each group high and low level is fixed, which is called cycle.

The time of high level output is pulse width whose percentage is called Duty Cycle. The longer that high level lasts,
the larger the duty cycle of analog signals is, and the corresponding voltage as well.

Below chart is pulse width 50%, then the output voltage is 3.3 * 50% = 1.65Vand the brightness of LED is medium.

5.2. 2.Projects 171

keyestudio WiKi

(4)Connection Diagram

Red LED Module RPI GPIO-PCF8591 Shield
S SIO18
V 5V
G G

(5)Run Example Code

172 Chapter 5. Processing JAVA Tutorial

keyestudio WiKi

Input the following the command and press“Enter”, open Processing IDE and click“RUN”

processing /home/pi/sketchbook/Processing_Code/sketch_4_Breathing_LED/sketch_4_Breathing_LED.pde

(6)Test Results

LED gradually brightens, and the color of red dot in the display window gets darker as well. Progress bar can adjust
the LED’s brightness, as shown below:

(7)Example Code

Except main program code, there is a“SOFTPWM”custom page in processing software, as shown below:

The code of the main program:

5.2. 2.Projects 173

keyestudio WiKi

import processing.io.*;

int ledPin = 18; //led Pin
int borderSize = 40; //
float t = 0.0; //progress percent
float tStep = 0.004; // speed
SOFTPWM p = new SOFTPWM(ledPin, 10, 100); //Create a PWM pin,
→˓initialize the duty cycle and period
void setup() {

size(640, 360); //display window size
strokeWeight(4); //stroke Weight

}

void draw() {
// Show static value when mouse is pressed, animate otherwise
if (mousePressed) {
//Gets the value of the X-axis coordinate when the mouse is pressed,
//within the (borderSize, width-bordersize) range
int a = constrain(mouseX, borderSize, width - borderSize);
t = map(a, borderSize, width - borderSize, 0.0, 1.0); //

→˓Gets the value after the mapping
} else {
t += tStep; //The value of the variable T increases automatically
if (t > 1.0) t = 0.0;

}
p.softPwmWrite((int)(t*100)); //wirte the duty cycle according to t
background(255); //A white background
titleAndSiteInfo(); //title and Site infomation

//The brightness of the red circle varies with the value of T
fill(255, 255-t*255, 255-t*255);
//The center of the display box is a circle with a diameter of 100px
ellipse(width/2, height/2, 100, 100);

pushMatrix();
translate(borderSize, height - 45); //Set the new origin of coordinates
int barLength = width - 2*borderSize; //Define the length of the line

barBgStyle(); //progressbar bg
line(0, 0, barLength, 0); //A horizontal line
//Draw a 10px vertical line at the end of the horizontal line
line(barLength, -5, barLength, 5);
barStyle(); //progressbar
//Draw a 10px vertical line at the beginning of the horizontal line
line(0, -5, 0, 5);
//Draw the length of the black line according to the value of the variable t
line(0, 0, t*barLength, 0);

barLabelStyle(); //progressbar label
text("progress : "+nf(t*100,2,2),barLength/2,-25);
popMatrix();

}

(continues on next page)

174 Chapter 5. Processing JAVA Tutorial

keyestudio WiKi

(continued from previous page)

void titleAndSiteInfo() {
fill(0);
textAlign(CENTER); //set the text centered
textSize(40); //set text size
text("Breathing Light", width / 2, 40); //title
textSize(16);
text("www.keyestudio.com", width / 2, height - 20); //site

}
void barBgStyle() {
stroke(220);
noFill();

}

void barStyle() {
stroke(50);
noFill();

}

void barLabelStyle() {
noStroke();
fill(120);

}

(8)Reference

class SOFTPWM

public SOFTPWM**(int
iPin,** int dc**,** int
pwmRange**)**

Construct functionused to create PWM pinset pwmRange and initial duty cycle The
time of minimum duty cycle of pwmRange is 0.1ms pwmRange=100 means than
PWM duty cycle is 0.1ms*100=10ms

public void softP-
wmWrite**(int value)**

Set PMW Duty Cycle

public void softPwm-
Stop**()**

Stop outputting PWM

5.2.5 Project 5RGB

(1)Description

In this chapter, we will demonstrate how RGB lights show different colors via programming.

(2)Components Needed

5.2. 2.Projects 175

keyestudio WiKi

Raspberry Main
Board*1

RPI GPIO-PCF8591 Shield*1 RGB Mod-
ule*1

F-F DuPont Wires

(3)Knowledge about Component:

RGB Module

The RGB module integrates with three LEDs in red, green and blue respectively. These three LEDs also share the same
anode. The combinations of these three colors can form almost all other colors visible to human eyes. Thus, it has
found wide applications in terms of colors.

Red, green and blue are three primary colors. They could produce all kinds of visible lights when mixing them up.
Computer screen, single pixel mobile phone screen, neon light work under this principle.

Theoretically, if we use three 8-bit PWM (Pulse Width Modulation) signals to control a RGB LED, we can create 28 *
28 * 28 = 16777216 (about 16 million) different combinations.

Now, let’s make a RGB LED display all kinds of colors.

(4)Connection Diagram

RGB Module RPI GPIO-PCF8591 Shield
R IO24
G IO23
B IO18
V 5V

176 Chapter 5. Processing JAVA Tutorial

keyestudio WiKi

(5)Run Example Code

Input the following command, press“Enter”and click“RUN”on Processing IDE:

processing /home/pi/sketchbook/Processing_Code/sketch_5_RGB_led/sketch_5_RGB_led.pde

(6)Test Results

After running the program, RGB LED is off, the window displays the round dot in black and the progress bars for red,
green and blue are 0%.

The round dot will change colors when dragging the progress bar to set PWM duty cycle for each color channel.

The color of RGB is as same as that of the round dot.

5.2. 2.Projects 177

keyestudio WiKi

(7) Example Code

This project contains a lot of code files, the core code is contained in the file sketch_5_RGB_led.pde.

Other files are customized. As shown below:

Code:

import processing.io.*;

int bluePin = 18; //blue Pin
(continues on next page)

178 Chapter 5. Processing JAVA Tutorial

keyestudio WiKi

(continued from previous page)

int greenPin = 23; //green Pin
int redPin = 24; //red Pin
int borderSize = 40; //picture border size
//Create a PWM pin,initialize the duty cycle and period
SOFTPWM pRed = new SOFTPWM(redPin, 100, 100);
SOFTPWM pGreen = new SOFTPWM(greenPin, 100, 100);
SOFTPWM pBlue = new SOFTPWM(bluePin, 100, 100);
//instantiate three ProgressBar Object
ProgressBar rBar, gBar, bBar;
boolean rMouse = false, gMouse = false, bMouse = false;
void setup() {
size(640, 360); //display window size
strokeWeight(4); //stroke Weight
//define the ProgressBar length
int barLength = width - 2*borderSize;
//Create ProgressBar Object
rBar = new ProgressBar(borderSize, height - 85, barLength);
gBar = new ProgressBar(borderSize, height - 65, barLength);
bBar = new ProgressBar(borderSize, height - 45, barLength);
//Set ProgressBar's title
rBar.setTitle("Red");gBar.setTitle("Green");bBar.setTitle("Blue");

}

void draw() {
background(200); //A white background
titleAndSiteInfo(); //title and Site infomation

fill(rBar.progress*255, gBar.progress*255, bBar.progress*255); //cycle color
ellipse(width/2, height/2, 100, 100); //show cycle

rBar.create(); //Show progressBar
gBar.create();
bBar.create();

}

void mousePressed() {
if ((mouseY< rBar.y+5) && (mouseY>rBar.y-5)) {
rMouse = true;

} else if ((mouseY< gBar.y+5) && (mouseY>gBar.y-5)) {
gMouse = true;

} else if ((mouseY< bBar.y+5) && (mouseY>bBar.y-5)) {
bMouse = true;

}
}
void mouseReleased() {
rMouse = false;
bMouse = false;
gMouse = false;

}
void mouseDragged() {
int a = constrain(mouseX, borderSize, width - borderSize);
float t = map(a, borderSize, width - borderSize, 0.0, 1.0);

(continues on next page)

5.2. 2.Projects 179

keyestudio WiKi

(continued from previous page)

if (rMouse) {
pRed.softPwmWrite((int)(100-t*100)); //wirte the duty cycle according to t
rBar.setProgress(t);

} else if (gMouse) {
pGreen.softPwmWrite((int)(100-t*100)); //wirte the duty cycle according to t
gBar.setProgress(t);

} else if (bMouse) {
pBlue.softPwmWrite((int)(100-t*100)); //wirte the duty cycle according to t
bBar.setProgress(t);

}
}

void titleAndSiteInfo() {
fill(0);
textAlign(CENTER); //set the text centered
textSize(40); //set text size
text("Colorful LED", width / 2, 40); //title
textSize(16);
text("www.keyestudio.com", width / 2, height - 20); //site

}

(8)Reference

class ProgressBarused to create
progress bar
public ProgressBar**(int ix,** int iy**,** int
barlen**)**

Constructed function, used to create ProgressBar, coordinates X, Y
of ProgressBar and length

public void setTitle**(String str)** Used to set the name of progress bar and display it in the middle of
progress bar

public void setProgress**(float pgress)** Used to set the process of progress bar parameter0<pgress<1.0.
public void create**() &** public void cre-
ate**(float pgress)**

Used to draw the progress bar

5.2.6 Project 6Active Buzzer

(1)Description

In this project, we will control a active buzzer via a mousse.

(2)Components Needed

180 Chapter 5. Processing JAVA Tutorial

keyestudio WiKi

Raspberry Main
Board*1

RPI GPIO-PCF8591
Shield*1

Active Buzzer Module*1 F-F DuPont Wires

(3)Knowledge about Component:

Active Buzzer ModuleThe active buzzer is equipped with an internal oscillator, which makes it possible to auto-
matically generate a tone as long as current flows through. It is very easy and convenient. But it also has its shortcoming
that the fixed frequency means it can only makes a monotone.

(4)Connection Diagram

Active Buzzer Module RPI GPIO-PCF8591 Shield
S SIO16
V 5V
G G

(5)Run Example Code

Input the following command, press“Enter”and click“RUN”on Processing IDE:

processing /home/pi/sketchbook/Processing_Code/sketch_6_active_buzzer/sketch_6_active_buzzer.pde

(6)Test Results

Click any area of the display window, active buzzer emits sound and the icon on display window below varies with the
status of active buzzer. When it stops the icon disappears.

5.2. 2.Projects 181

keyestudio WiKi

(7)Example Code

import processing.io.*;

int buzzerPin = 16;
(continues on next page)

182 Chapter 5. Processing JAVA Tutorial

keyestudio WiKi

(continued from previous page)

boolean buzzerState = false;
void setup() {
size(640, 360);
GPIO.pinMode(buzzerPin, GPIO.OUTPUT);

}

void draw() {
background(255);
titleAndSiteInfo(); //title and site infomation
drawBuzzer(); //buzzer img
if (buzzerState) {

GPIO.digitalWrite(buzzerPin, GPIO.HIGH); // buzzer on
drawArc(); //Sounds waves img

} else {
GPIO.digitalWrite(buzzerPin, GPIO.LOW); // buzzer off

}
}

void mouseClicked() { //if the mouse Clicked
buzzerState = !buzzerState; //Change the buzzer State

}
void drawBuzzer() {
strokeWeight(1);
fill(0);
ellipse(width/2, height/2, 50, 50);
fill(255);
ellipse(width/2, height/2, 10, 10);

}
void drawArc() {
noFill();
strokeWeight(8);
for (int i=0; i<3; i++) {
arc(width/2, height/2, 100*(1+i), 100*(1+i), -PI/4, PI/4, OPEN);

}
}
void titleAndSiteInfo() {
fill(0);
textAlign(CENTER); //set the text centered
textSize(40); //set text size
text("Active Buzzer", width / 2, 40); //title
textSize(16);
text("www.keyestudio.com", width / 2, height - 20); //site

}

5.2. 2.Projects 183

keyestudio WiKi

5.2.7 Project 7Button-controlled LED

(1)Description

Usually a complete open loop control is made of external information input, controller and actuator.

The external information is input into controller which can analyze the input data and send to control signals to make
actuator to react.

A button-controlled LED is decided by an open loop control. Next, we will make a desk lamp with a button, an LED
and RPi. LED is on when button is pressed, on the contrary, it will be off.

(2)Components Needed

Raspberry Main
Board*1

RPI GPIO-PCF8591
Shield*1

Red LED Module*1 Push Button
Sensor*1

F-F DuPont Wires

(3)Connection Diagram

Red LED Module RPI GPIO-PCF8591 Shield Push Button Sensor RPI GPIO-PCF8591 Shield

S SIO16 S SIO18

V 5V V 5V

G G G G

184 Chapter 5. Processing JAVA Tutorial

keyestudio WiKi

(4)Eliminate Button Shaking

The LED status won’t jump into new state immediately when button is pressed. There will be a short continuous
shaking before into new status, which is similar with release status.

Therefore, there will be many pressing and releasing actions. The shaking will misleads the high speed movement of
MCU, causing wrong judgement. That requires us to judge the button’ status frequently. And only when its status is

5.2. 2.Projects 185

keyestudio WiKi

stable can we be sure that the button is pressed.

(5)Run Test Code

Input the following command, press“Enter”and click“RUN”on Processing IDE:

processing /home/pi/sketchbook/Processing_Code/sketch_7_button_led/sketch_7_button_led.pde

(6)Test Results

After running example code, the display window is in dark gray. Press button, LED is on and window turns into red
color; Press button again, LED is off and its background color is dark gray color, as shown below:

(7)Example Code

import processing.io.*;

int ledPin = 16; //define ledPin
int btnPin = 18; //define btnPin
int count = 0;
int flag = 0;
int ledState = 0;

void setup() {
size(100, 100);
GPIO.pinMode(btnPin, GPIO.INPUT_PULLUP);
GPIO.pinMode(ledPin, GPIO.OUTPUT);

}

void draw() {

if (GPIO.digitalRead(btnPin) == GPIO.LOW) { // button is pressed
delay(10);
flag = 1;
if(flag == 1)
{
delay(10);
if (GPIO.digitalRead(btnPin) == GPIO.HIGH)
{
count = count + 1;

(continues on next page)

186 Chapter 5. Processing JAVA Tutorial

keyestudio WiKi

(continued from previous page)

println(count);
flag = 0;

}
}

}
ledState = count % 2;
if(ledState == 1)
{
GPIO.digitalWrite(ledPin, GPIO.HIGH); //led on
background(255, 0, 0);

}
else
{
GPIO.digitalWrite(ledPin, GPIO.LOW); //led off
background(102);

}
}

5.2.8 Project 8PIR Motion Sensor

(1)Description

Lamps only light up when people passes by installed in some places, which are conductive to energy and cost saving.
Have you ever thought about the principle behind these lamps? It is because of PIR motion sensors. In this lesson, we
will learn about PIR motion sensor.

(2)Components Needed

Raspberry Main
Board*1

RPI GPIO-PCF8591
Shield*1

Red LED Module*1 PIR Motion
Sensor*1

F-F DuPont Wires

(3)Knowledge about Component

PIR Motion Sensor

The principle of human infrared sensor is that when certain crystals, such as lithium tantalate and triglyceride sulfate,
are heated, the two ends of the crystal will generate an equal number of charges, with opposite signs, which can be
converted into voltage output by an amplifier.

Human body will emit IR ray, although weak but can be detected. This sensor outputs 1 (high level) when human
being is detected; otherwise, it outputs 0 (low level).

Note: Nothing but moving person can be detected, with the detection distance up to 3m.

(4)Connection Diagram

5.2. 2.Projects 187

keyestudio WiKi

Red LED Module RPI GPIO-PCF8591 Shield PIR Motion Sensor RPI GPIO-PCF8591 Shield

S SIO5 S SIO18

V 5V V 5V

G G G G

(5)Run Example Code

Input the following command, press “Enter”and click“RUN”on Processing IDE:

processing /home/pi/sketchbook/Processing_Code/sketch_8_PIR_led/sketch_8_PIR_led.pde

(6)Test Results

If PIR motion sensor doesn’t detect moving person, LED will be off and display window will show black dot
and“Nobody”; on the contrary, LED will be on, and window will show red dot and “Somebody”, as shown below:

188 Chapter 5. Processing JAVA Tutorial

keyestudio WiKi

(7)Example Code

import processing.io.*;

(continues on next page)

5.2. 2.Projects 189

keyestudio WiKi

(continued from previous page)

final int sensorPin = 18; //connect to sensor pin
final int ledPin = 5; //connect to led pin
void setup() {
size(640,360); //window size
GPIO.pinMode(sensorPin, GPIO.INPUT);
GPIO.pinMode(ledPin, GPIO.OUTPUT);

}

void draw() {
background(255);
titleAndSiteInfo();
//if read sensor for high level
if (GPIO.digitalRead(sensorPin) == GPIO.HIGH) {
GPIO.digitalWrite(ledPin, GPIO.HIGH); //led on
fill(255,0,0); //fill in red
textAlign(CENTER); //set the text centered
textSize(40); //set text size
text("Somebody", width / 2, 275); //title

} else {
GPIO.digitalWrite(ledPin, GPIO.LOW); //led off
fill(100); //fill in white
textAlign(CENTER); //set the text centered
textSize(40); //set text size
text("Nobody", width / 2, 275); //title

}
ellipse(width/2,height/2.5,height/3,height/3);

}

void titleAndSiteInfo() {
fill(0);
textAlign(CENTER); //set the text centered
textSize(45); //set text size
text("PIR LED", width / 2, 40); //title
textSize(16);
text("www.keyestudio.com", width / 2, height - 20); //site

}

5.2.9 Project 9Fire Alarm

(1)Description

A flame detector is a sensor designed to detect and respond to the presence of flames or fire, allowing flame detection.

(2)Components Needed

190 Chapter 5. Processing JAVA Tutorial

keyestudio WiKi

Raspberry Main
Board*1

RPI GPIO-PCF8591
Shield*1

Active Buzzer Module*1 Flame
Sensor*1

F-F DuPont Wires

(3)Knowledge about Component

Flame Sensor

Flame sensor is made based on the principle that infrared ray is highly sensitive to flame. It has an infrared receiving
tube specially designed to detect fire, and then convert the flame brightness to fluctuating level signal. The signals are
then input into the central processor and be dealt with accordingly.

Flame sensor is used to detect fire source with wavelength in 760nm1100nm, detection angle is 60°. When its IR waves
length is close to 940nm, and its sensitivity is the highest.

Notice that keep flame sensor away from fire source to defend its damage for its working temperature is between -25°-
85°

Note: a potentiometer is built in the sensor so its sensitivity can be adjusted by rotating it.

(4)Connection Diagram

Active Buzzer Module RPI GPIO-PCF8591 Shield Flame Sensor RPI GPIO-PCF8591 Shield

S SIO16 D0 SIO18

V 5V VCC 5V

G G GND G

5.2. 2.Projects 191

keyestudio WiKi

(5)Run Example Code

Input the following command, press“Enter”and click“RUN”on Processing IDE:

processing /home/pi/sketchbook/Processing_Code/sketch_9_flame_buzzer/sketch_9_flame_buzzer.pde

(6)Test Results

Active buzzer will emit sound and window display will show arc lines and“Fire”as follows, when flame is detected;
otherwise, active buzzer won’t emit sound, arc lines and“Fire”will disappear.

192 Chapter 5. Processing JAVA Tutorial

keyestudio WiKi

(7)Example Code

import processing.io.*;

int flamePin = 18; //connect to flame pin
int buzzerPin = 16; //connect to buzzer pin
boolean buzzerState = false;
void setup() {
size(640,360); //window size
GPIO.pinMode(flamePin, GPIO.INPUT);
GPIO.pinMode(buzzerPin, GPIO.OUTPUT);

}

void draw() {
background(255);
titleAndSiteInfo(); //title and site infomation
drawBuzzer(); //buzzer img
//if read sensor for high level
if (GPIO.digitalRead(flamePin) == GPIO.LOW) {

GPIO.digitalWrite(buzzerPin, GPIO.HIGH); //buzzer on
drawArc(); //Sounds waves img
fill(0);
textAlign(CENTER); //set the text centered
textSize(40); //set text size
text("Fire", width / 3, 250); //title

} else {
GPIO.digitalWrite(buzzerPin, GPIO.LOW); //buzzer off

}
}

(continues on next page)

5.2. 2.Projects 193

keyestudio WiKi

(continued from previous page)

void drawBuzzer() {
strokeWeight(1);
fill(0);
ellipse(width/2, height/2, 50, 50);
fill(255);
ellipse(width/2, height/2, 10, 10);

}
void drawArc() {
noFill();
strokeWeight(8);
for (int i=0; i<3; i++) {
arc(width/2, height/2, 100*(1+i), 100*(1+i), -PI/4, PI/4, OPEN);

}
}
void titleAndSiteInfo() {
fill(0);
textAlign(CENTER); //set the text centered
textSize(40); //set text size
text("Fire Alarm", width / 2, 40); //title
textSize(16);
text("www.keyestudio.com", width / 2, height - 20); //site

}

5.2.10 Project 10 Collision Alarm

(1)Description

We can use the collision sensor to detect whether crash happens. When the metal plate above the push button switch of
the sensor is knocked, it outputs low level signals; and when the button is open, it remind in high level. In this project,
collision sensor will be applied to control the active buzzer.

(2)Components Needed

Raspberry Main
Board*1

RPI GPIO-PCF8591
Shield*1

Active Buzzer Mod-
ule*1

Collision
Sensor*1

F-F DuPont Wires

(3)Knowledge about Component

Collision Sensor:

It is a widely used collision sensor that has a push button switch covered by a mental plate. When the plate is pushed,
the button is pressed, the sensor outputs low level and the LED on it lights; or it outputs high level and the LED reminds
off.

194 Chapter 5. Processing JAVA Tutorial

keyestudio WiKi

This sensor is often used as a limit switch in a 3D printer.

(4)Connection Diagram

Active Buzzer Module RPI GPIO-PCF8591 Shield Collision Senso RPI GPIO-PCF8591 Shield

S SIO16 S SIO18

V 5V V 5V

G G G G

(5)Run Example Code

Input the following command, press“Enter”and click“RUN”on Processing IDE:

processing /home/pi/sketchbook/Processing_Code/sketch_10_crash_buzzer/sketch_10_crash_buzzer.pde

(6)Test Results

After running the program, when the metal plate of the push button switch is pressed, the buzzer makes sound and the
display window shows the arc-sharped pattern and sentence“The switch shrapnel is depressed”; it keeps silent and the
arc-sharped pattern and sentence“The switch shrapnel is depressed”disappear as shown below.

5.2. 2.Projects 195

keyestudio WiKi

(7)Example Code

import processing.io.*;

(continues on next page)

196 Chapter 5. Processing JAVA Tutorial

keyestudio WiKi

(continued from previous page)

int crashPin = 18; //connect to crash pin
int buzzerPin = 16; //connect to buzzer pin
boolean buzzerState = false;
void setup() {
size(640,360); //window size
GPIO.pinMode(crashPin, GPIO.INPUT);
GPIO.pinMode(buzzerPin, GPIO.OUTPUT);

}

void draw() {
background(255);
titleAndSiteInfo(); //title and site infomation
drawBuzzer(); //buzzer img
//if read sensor for high level
if (GPIO.digitalRead(crashPin) == GPIO.LOW) {

GPIO.digitalWrite(buzzerPin, GPIO.HIGH); //buzzer on
drawArc(); //Sounds waves img
fill(0);
textAlign(CENTER); //set the text centered
textSize(20); //set text size
text("The switch shrapnel is depressed", width / 4, 250); //title

} else {
GPIO.digitalWrite(buzzerPin, GPIO.LOW); //buzzer off

}
}

void drawBuzzer() {
strokeWeight(1);
fill(0);
ellipse(width/2, height/2, 50, 50);
fill(255);
ellipse(width/2, height/2, 10, 10);

}
void drawArc() {
noFill();
strokeWeight(8);
for (int i=0; i<3; i++) {
arc(width/2, height/2, 100*(1+i), 100*(1+i), -PI/4, PI/4, OPEN);

}
}
void titleAndSiteInfo() {
fill(0);
textAlign(CENTER); //set the text centered
textSize(40); //set text size
text("Collision Warning", width / 2, 40); //title
textSize(16);
text("www.keyestudio.com", width / 2, height - 20); //site

}

5.2. 2.Projects 197

keyestudio WiKi

5.2.11 Project 11 Line-tracking Sensor

(1)Description

You may have seen that in an experiment a smart car moved along a black line and it didn’t overstep this boundary. How
did it make it? The credit goes to a line-tracking sensor. And in this project, we intend to learn about the line-tracking
sensor.

(2)Components Needed

Raspberry Main
Board*1

RPI GPIO-PCF8591
Shield*1

Red LED Module*1 Line-tracking
Sensor*1

F-F DuPont Wires

(3)Knowledge about Component

Line-tracking Sensor

It is an infrared sensor in nature which can detect white and black objects. The working principle of the TCRT5000
pair tube on the sensor is based on the different reflectivity of infrared to colors so as to convert this different strengths
of reflected signals to electric signals. When the sensor detects black objects, it is in high level while when it sensors
white items it is in low level. And the detection altitude is from 0 to 3cm. You can rotate the potentiometer in a bid to
adjust the sensitivity of the line-tracking sensor.

(4)Connection Diagram

Red LED Module RPI GPIO-PCF8591 Shield Line-tracking Sensor RPI GPIO-PCF8591 Shield

S SIO27 S SIO18

V 5V V 5V

G G G G

198 Chapter 5. Processing JAVA Tutorial

keyestudio WiKi

(5)Run Example Code

Input the following command, press“Enter”and click“RUN”on Processing IDEprocessing
/home/pi/sketchbook/Processing_Code/sketch_11_tracking/sketch_11_tracking.pde

(6)Test Results

After running the program, when the line-tracking sensor detects blacks obstacles or senses nothing,the LED reminds
off the pattern in the display representing the LED is in black and the phrase “Black object”appears; while when it
detects white items, the LED is on, the pattern on the window gets red and the phrase “White object” displays as shown
below:

5.2. 2.Projects 199

keyestudio WiKi

(7)Example Code

import processing.io.*;

final int trackingPin = 18; //connect to tracking pin
final int ledPin = 27; //connect to led pin
void setup() {
size(640,360); //window size
GPIO.pinMode(trackingPin, GPIO.INPUT);
GPIO.pinMode(ledPin, GPIO.OUTPUT);

}

void draw() {
background(255);
titleAndSiteInfo();
//if read sensor for high level
if (GPIO.digitalRead(trackingPin) == GPIO.LOW) {
GPIO.digitalWrite(ledPin, GPIO.HIGH); //led on
fill(255,0,0); //fill in red
textAlign(CENTER); //set the text centered
textSize(40); //set text size
text("White object", width / 2, 275); //title

} else {
GPIO.digitalWrite(ledPin, GPIO.LOW); //led off
fill(100); //fill in white
textAlign(CENTER); //set the text centered
textSize(40); //set text size
text("Black object", width / 2, 275); //title

}
(continues on next page)

200 Chapter 5. Processing JAVA Tutorial

keyestudio WiKi

(continued from previous page)

ellipse(width/2,height/2.5,height/3,height/3);
}

void titleAndSiteInfo() {
fill(0);
textAlign(CENTER); //set the text centered
textSize(45); //set text size
text("Tracking", width / 2, 40); //title
textSize(16);
text("www.keyestudio.com", width / 2, height - 20); //site

}

5.2.12 Project 12 Magnetic Detection

(1)Description

What is the best way to detect a magnet? Use another magnet? Yeah , it can but it is not sensitive enough. You still
need to feel it by yourselves.

Perhaps you can try a hall magnetic sensor which features high sensitivity, quick response, nice temperature perfor-
mance, and high reliability.

In this project, we will try to turn a LED on and off through a hall magnetic sensor.

(2)Components Needed

Raspberry
Main Board*1

RPI GPIO-PCF8591
Shield*1

Red LED Module*1 Hall Magnetic
Sensor*1

F-F DuPont Wires

(3)Knowledge about Component:

Hall Magnetic Sensor

The main component built in the sensor is A3144E, which is an electronic magnetic device and an active one. It uses
magnetic field and Hall effects to achieve the purpose of non-contact control. Since the Hall element itself is a chip in
nature, its working life is theoretically unlimited. The sensor can be used to detect magnetic fields and output digital
signals. It can sense magnetic materials within a detection range of about 3cm. Note that it can only detect the presence
of a magnetic field nearby, but not the strength of the magnetic field.

(4)Connection Diagram

5.2. 2.Projects 201

keyestudio WiKi

Red LED Module RPI GPIO-PCF8591 Shield Hall Magnetic Sensor RPI GPIO-PCF8591 Shield

S SIO5 S SIO18

V 5V V 5V

G G G G

(5)Run Example Code

Input the following command, press“Enter”and click“RUN”on Processing IDE:

processing /home/pi/sketchbook/Processing_Code/sketch_12_Hall_magnetic/sketch_12_Hall_magnetic.pde

(6)Test Results

After running the program and placing a magnetic ball around the Hall magnetic sensor, when the sensor detects
magnetic field nearby, the window shows “magnetic” and the LED lights up; otherwise, it displays“nonmagnetic”and
the LED stays dark.

202 Chapter 5. Processing JAVA Tutorial

keyestudio WiKi

(7)Example Code

import processing.io.*;

(continues on next page)

5.2. 2.Projects 203

keyestudio WiKi

(continued from previous page)

final int hallPin = 18; //connect to hall pin
final int ledPin = 5; //connect to led pin
void setup() {
size(640,360); //window size
GPIO.pinMode(hallPin, GPIO.INPUT);
GPIO.pinMode(ledPin, GPIO.OUTPUT);

}

void draw() {
background(255);
titleAndSiteInfo();
//if read sensor for high level
if (GPIO.digitalRead(hallPin) == GPIO.LOW) {
GPIO.digitalWrite(ledPin, GPIO.HIGH); //led on
fill(255,0,0); //fill in red
textAlign(CENTER); //set the text centered
textSize(40); //set text size
text("magnetic", width / 2, 275); //title

} else {
GPIO.digitalWrite(ledPin, GPIO.LOW); //led off
fill(100); //fill in white
textAlign(CENTER); //set the text centered
textSize(40); //set text size
text("nonmagnetic", width / 2, 275); //title

}
ellipse(width/2,height/2.5,height/3,height/3);

}

void titleAndSiteInfo() {
fill(0);
textAlign(CENTER); //set the text centered
textSize(45); //set text size
text("Tracking", width / 2, 40); //title
textSize(16);
text("www.keyestudio.com", width / 2, height - 20); //site

}

Project 13 Touch-sensitive Alarm

(1)Description

Touch-sensitive alarm is very commonplace in daily life, especially found in home anti-theft and car anti-theft systems.
When someone touches the alarming mental material, the device alarms to warn people. And it is of high sensitivity
and high reliability evidenced by issuing alarm the moment it is touched.

(2)Components Needed

204 Chapter 5. Processing JAVA Tutorial

keyestudio WiKi

Raspberry
Main Board*1

RPI GPIO-PCF8591
Shield*1

Active Buzzer Mod-
ule*1

Capacitive Touch
Module*1

F-F DuPont Wires

(3)Knowledge about Component:

Capacitive Touch Module

It mainly uses touch detection IC and can be found in many electronic devices. It uses the most popular capacitive
sensing technology, just like the smart buttons on your phone. The touching area of this small sensor can feel the touch
of humans and metals by responding with high or low level. It can still detect the touch though covered by a piece
of paper and cloth. The sensitivity reduces with the increase of items between the touch-sensitive area and the object
performing the touch.

The touch detection IC is designed to replace the traditional button with a variable area key, featuring low power
consumption and wide operating voltage.

When the module is powered up, it needs a stabilization time of about 0.5 sec. During this time period, do not touch
the keypad. At this time, all functions are disabled, and self-calibration is always performed. No touching the key, the
recalibration period is about 4.0sec.

(4)Connection Diagram

Active Buzzer Mod-
ule

RPI GPIO-PCF8591
Shield

Capacitive Touch Sen-
sor

RPI GPIO-PCF8591
Shield

S SIO27 S SIO18

V 5V V 5V

G G G G

5.2. 2.Projects 205

keyestudio WiKi

(5)Run Example Code

Input the following command, press“Enter”and click“RUN”on Processing IDE:

processing /home/pi/sketchbook/Processing_Code/sketch_13_touch_alarm/sketch_13_touch_alarm.pde

(6)Test Results

After running the program, when the sensing area on the capacitive touch sensor is touched, the window shows arc-
shaped pattern and “Touch” and the buzzer makes sounds; otherwise, shows no arc-shaped pattern and “Touch” and
the buzzer is in silence.

206 Chapter 5. Processing JAVA Tutorial

keyestudio WiKi

(7)Example Code

import processing.io.*;

int touchPin = 18; //connect to touch pin
int buzzerPin = 27; //connect to buzzer pin
boolean buzzerState = false;
void setup() {
size(640,360); //window size
GPIO.pinMode(touchPin, GPIO.INPUT);
GPIO.pinMode(buzzerPin, GPIO.OUTPUT);

}

void draw() {
background(255);
titleAndSiteInfo(); //title and site infomation
drawBuzzer(); //buzzer img
//if read sensor for high level
if (GPIO.digitalRead(touchPin) == GPIO.HIGH) {

GPIO.digitalWrite(buzzerPin, GPIO.HIGH); //buzzer on
drawArc(); //Sounds waves img
fill(0);
textAlign(CENTER); //set the text centered
textSize(40); //set text size
text("Touch", width / 3, 250); //title

} else {
GPIO.digitalWrite(buzzerPin, GPIO.LOW); //buzzer off

}
}

(continues on next page)

5.2. 2.Projects 207

keyestudio WiKi

(continued from previous page)

void drawBuzzer() {
strokeWeight(1);
fill(0);
ellipse(width/2, height/2, 50, 50);
fill(255);
ellipse(width/2, height/2, 10, 10);

}
void drawArc() {
noFill();
strokeWeight(8);
for (int i=0; i<3; i++) {
arc(width/2, height/2, 100*(1+i), 100*(1+i), -PI/4, PI/4, OPEN);

}
}
void titleAndSiteInfo() {
fill(0);
textAlign(CENTER); //set the text centered
textSize(40); //set text size
text("Touch Sensing Alarm", width / 2, 40); //title
textSize(16);
text("www.keyestudio.com", width / 2, height - 20); //site

}

5.2.13 Project 14 Rotary Potentiometer

(1)Description

In this project, we intend to use the PCF8591 A/D converter chip behind RPI GPIO-PCF8591 shield to reas the voltage
value of the potentiometer and makes the display window shows it.

(2)Components Needed

Raspberry Main
Board*1

RPI GPIO-PCF8591 Shield*1 Rotary Potentiome-
ter*1

F-F DuPont Wires

(3)Knowledge about Components

PCF8591 A/D converter chip:

It is installed behind the RPI GPIO-PCF8591 shield with voltage resolution of 5V/255 0.01961.

208 Chapter 5. Processing JAVA Tutorial

keyestudio WiKi

Since the Raspberry Pi itself does not have AD/DA function, an expansion board with this function is required when it
is connected to external analog sensors. And here we use PCF8591 A/D converter with I2C communication.

Enable the I2C communication function of the Raspberry Pi as follows: Raspberry Pi does not enable the I2C function
by default. Enter sudo raspi-config in the terminal to enter the Raspberry Pi configuration interface.

Enable the I2C function of Raspberry Pi as follows:

5.2. 2.Projects 209

keyestudio WiKi

Find more about I2C:

https://www.nxp.com/docs/en/user-guide/UM10204.pdf

Pin description:

You can find more information,such as the specification of this chip, in the resources link:

https://fs.keyestudio.com/KS3016

From the picture below, it is obvious that the PCF8591 converter is equipped with a AOUT pin and 4 analog inputs
pinsA0~A3

210 Chapter 5. Processing JAVA Tutorial

https://www.nxp.com/docs/en/user-guide/UM10204.pdf
https://fs.keyestudio.com/KS3016

keyestudio WiKi

Check the address of the I2C module (PCF8591) connected to the Raspberry Pi, enter the command: i2cdetect -y 1,
and then press Enter.

From below picture, it is known that the I2C address is 0x48 .

The address for reading pins A0~A3 is:

A0 = 0x40 ##A0 —-> port address

5.2. 2.Projects 211

keyestudio WiKi

A1 = 0x41

A2 = 0x42

A3 = 0x43

The address for analog output pin AOUT is: 0x40, which is 64 when hexadecimal is converted to decimal.

Rotary Potentiometer

It can be viewed as an adjustable resistor with the range from 0~10K.

Therefore when we rotate the potentiometer, we actually change its resistance. We can build a circuit to convert the
changes in the resistance to the changes in voltage. Then input the voltage changes to the GPIO analog input port for
detection through the signal terminal of the module.

(4)Connection Diagram

Rotary Potentiometer RPI GPIO-PCF8591 Shield
S SA0
V 5V
G G

(5)Run Example Code

Input the following command, press“Enter”and click“RUN”on Processing IDE:

processing /home/pi/sketchbook/Processing_Code/sketch_14_potentiometer/sketch_14_potentiometer.pde

(6)Test Results

Window shows voltage value and ADC value. You could change the output voltage by rotating the potentiometer, as
shown below

212 Chapter 5. Processing JAVA Tutorial

keyestudio WiKi

(7)Example Code

This program includes many code files, the core code is included in sketch_14_potentiometer.pde file, others are cus-
tomized, as shown below:

Code:

import processing.io.*;
//Create a object of class ADCDevice
ADCDevice adc = new ADCDevice();
void setup() {

(continues on next page)

5.2. 2.Projects 213

keyestudio WiKi

(continued from previous page)

size(640, 360);
if (adc.detectI2C(0x48)) {
adc = new PCF8591(0x48);

}else {
println("Not found ADC Module!");
System.exit(-1);

}
}
void draw() {
int adcValue = adc.analogRead(0); //Read the ADC value of channel 0
float volt = adcValue*5.0/255.0; //calculate the voltage
background(255);
titleAndSiteInfo();

fill(0);
textAlign(CENTER); //set the text centered
textSize(30);
text("ADC: "+nf(adcValue, 3, 0), width / 2, height/2+50);
textSize(40); //set text size
text("Voltage: "+nf(volt, 0, 2)+"V", width / 2, height/2); //

}
void titleAndSiteInfo() {
fill(0);
textAlign(CENTER); //set the text centered
textSize(40); //set text size
text("ADC", width / 2, 40); //title
textSize(16);
text("www.keyestudio.com", width / 2, height - 20); //site

}

(8)Reference

class ADCDeviceThis is a base class which
means all ADC module class is its subclass . And
it provides two basic member functions.
public int analogRead**(int chn)** This is a uniform function name. Different chips have

different implementation methods. Therefore, specific
methods are implemented in subclasses.

public boolean detectI2C**(int addr)** Used to check the I2C device with address If it exists,
return trueotherwise, return false

class PCF8591 extends ADCDevice (This is a custom
class used to operate ADC and DAC of PCF8591)
public PCF8591**(int addr)** Constructed functionused to create PCF8591class Pa-

rameter is the device address of I2C PCF8591
public int analogRead**(int chn)** Used to read ADC value of one channel of PCF8591 Pa-

rameter CHN implies channel number 0,1,2,3
public byte**[]** analogRead**()** Read the value of ADC on all channels on PCF8591
public void analogWrite**(int data)** Input DAC value to PCF8591

214 Chapter 5. Processing JAVA Tutorial

keyestudio WiKi

5.2.14 Project 15 Photoresistor

(1)Description

Photoresistor (Photovaristor) is a resistor whose resistance varies according to different incident light strength. It’s
made based on the photoelectric effect of semiconductor. In this lesson, let’s explain how it works.

(2)Components Needed

Raspberry Main
Board*1

RPI GPIO-PCF8591
Shield*1

Red LED Module*1 Photoresistor
Sensor*1

F-F DuPont Wires

(3)Knowledge about Component

Photoresistor

Photoresistor (Photovaristor) is a resistor whose resistance varies according to different incident light strengths. It’s
made based on the photoelectric effect of semiconductor. If the incident light is intense, its resistance reduces; if the
incident light is weak, the resistance increases.

If incident light on a photoresistor exceeds a certain frequency, photons absorbed by the semiconductor give bound
electrons enough energy to jump into the conduction band. The resulting free electrons (and their hole partners) conduct
electricity, thereby lowering resistance.

(4)Connection Diagram

Red LED Module RPI GPIO-PCF8591 Shield Photoresistor Sensor RPI GPIO-PCF8591 Shield

S SIO5 S SA0

V 5V V 5V

G G G G

5.2. 2.Projects 215

keyestudio WiKi

(5)Run Example Code

Note: in the experiment, I2C communication is used. We need to check the iic address first(enter commandi2cdetect
-y 1 and press“Enter”. If failed, check the wiring is correct or not. If correct, you need to enable I2C communication
function of Raspberry Pi, project 14 is for your reference.

After enabling the I2C communication, input the following command, press“Enter”and click“RUN”on Processing IDE:

processing /home/pi/sketchbook/Processing_Code/sketch_15_photo_resistor/sketch_15_photo_resistor.pde

(6)Test Results

Display window will show the voltage value, ADC value and LED icon. You could change voltage value and its
brightness by changing the light intensity of photoresistor,as shown below:

(7)Example Code

216 Chapter 5. Processing JAVA Tutorial

keyestudio WiKi

This program includes many code files, the core code is included in sketch_15_photo_resistor.pde file, others are
customized, as shown below:

Code:

import processing.io.*;

int ledPin = 5; //led
//Create a object of class ADCDevice
ADCDevice adc = new ADCDevice();
SOFTPWM p = new SOFTPWM(ledPin, 0, 100);
void setup() {
size(640, 360);
if (adc.detectI2C(0x48)) {
adc = new PCF8591(0x48);

} else {
println("Not found ADC Module!");
System.exit(-1);

}
}
void draw() {
int adcValue = adc.analogRead(0); //Read the ADC value of channel 0
float volt = adcValue*5.0/255.0; //calculate the voltage
float dt = adcValue/255.0;
p.softPwmWrite((int)(dt*100)); //output the pwm
background(255);
titleAndSiteInfo();

fill(255, 255-dt*255, 255-dt*255); //cycle
noStroke(); //no border
ellipse(width/2, height/2, 100, 100);

(continues on next page)

5.2. 2.Projects 217

keyestudio WiKi

(continued from previous page)

fill(0);
textAlign(CENTER); //set the text centered
textSize(30);
text("ADC: "+nf(adcValue, 3, 0), width / 2, height/2+130);
text("Voltage: "+nf(volt, 0, 2)+"V", width / 2, height/2+100);

}
void titleAndSiteInfo() {

fill(0);
textAlign(CENTER); //set the text centered
textSize(40); //set text size
text("SoftLight", width / 2, 40); //title
textSize(16);
text("www.keyestudio.com", width / 2, height - 20); //site

}

5.2.15 Project 16 Water Level Monitor

(1)Description

In daily life, when there is heavy or even torrential rain, the water level in rivers or reservoirs soars. And when it reaches
a certain water level, it is necessary to open the gates to discharge the flood to solve the hidden safety hazards. But how
to detect the water level in a river or a reservoir? The answer lies in the water level sensor. In this lesson, we will learn
to use this sensor to issue alarms when the water bucket is almost full.

(2)Components Needed:

Raspberry
Main Board*1

RPI GPIO-PCF8591
Shield*1

Active Buzzer Mod-
ule*1

Water Level Sensor*1 F-F DuPont Wires

(3)Knowledge about Component

Water Level Sensor

Our water sensor is easy- to-use, portable and cost-effective, designed to identify and detect water level and water drop.

This sensor measures the volume of water drop and water quantity through an array of traces of exposed parallel wires.

It could convert water content to analog signals, and output analog value could be used by function of application. It
has the features of low consumption as well.

(4)Connection Diagram

218 Chapter 5. Processing JAVA Tutorial

keyestudio WiKi

Active Buzzer Mod-
ule

RPI GPIO-PCF8591
Shield

Water Level Sen-
sor

RPI GPIO-PCF8591
Shield

S SIO18 S SA0

V 5V V 5V

G G G G

(5)Run Example Code

Note: in the experiment, I2C communication is used. We need to check the iic address first(enter commandi2cdetect
-y 1 and press“Enter”. If failed, check the wiring is correct or not. If correct, you need to enable I2C communication
function of Raspberry Pi, project 14 is for your reference.

After enabling the I2C communication, input the following command, press“Enter”and click“RUN”on Processing IDE:

processing /home/pi/sketchbook/Processing_Code/sketch_16_water_buzzer/sketch_16_water_buzzer.pde

(6)Test Results

The window will show the voltage value, ADC value and buzzer icon after executing code.

The voltage value and ADC value vary with the depth of water level sensor in the water. Buzzer will emit , arc lines
next to buzzer icon will be shown and“The water is full”appear, when the water level reaches the certain value. A
shown below:

5.2. 2.Projects 219

keyestudio WiKi

(7)Example Code

This program includes a few code files, the core code is in the sketch_16_water_buzzer.pde other files consist of some
customized ones, as shown below:

Code:

import processing.io.*;

(continues on next page)

220 Chapter 5. Processing JAVA Tutorial

keyestudio WiKi

(continued from previous page)

int buzzerPin = 18; //connect to buzzer pin
boolean buzzerState = false;
//Create a object of class ADCDevice
ADCDevice adc = new ADCDevice();
void setup() {

size(640, 360);
GPIO.pinMode(buzzerPin, GPIO.OUTPUT);
if (adc.detectI2C(0x48)) {
adc = new PCF8591(0x48);

} else if (adc.detectI2C(0x4b)) {
adc = new ADS7830(0x4b);

} else {
println("Not found ADC Module!");
System.exit(-1);

}
}
void draw() {
int adcValue = adc.analogRead(0); //Read the ADC value of channel 0
float volt = adcValue*5.0/255.0; //calculate the voltage
background(255);
titleAndSiteInfo();

fill(0);
textAlign(LEFT); //set the text lefted
textSize(30);
text("ADC: "+nf(adcValue, 3, 0), width / 28, height/1.5+70);
textSize(30); //set text size
text("Voltage: "+nf(volt, 0, 2)+"V", width / 28, height/1.30);
drawBuzzer(); //buzzer img
if (adcValue > 150) {
GPIO.digitalWrite(buzzerPin, GPIO.HIGH); //buzzer on
drawArc(); //Sounds waves img
fill(0);
textAlign(LEFT); //set the text lefted
textSize(30);
text("The water is full", width / 28, height/3+70);

} else {
GPIO.digitalWrite(buzzerPin, GPIO.LOW); //buzzer off

}
}
void drawBuzzer() {
strokeWeight(1);
fill(0);
ellipse(width/1.5, height/2, 50, 50);
fill(255);
ellipse(width/1.5, height/2, 10, 10);

}
void drawArc() {
noFill();
strokeWeight(8);
for (int i=0; i<3; i++) {
arc(width/1.5, height/2, 100*(1+i), 100*(1+i), -PI/4, PI/4, OPEN);

(continues on next page)

5.2. 2.Projects 221

keyestudio WiKi

(continued from previous page)

}
}
void titleAndSiteInfo() {
fill(0);
textAlign(CENTER); //set the text centered
textSize(40); //set text size
text("Water Level Monitoring Alarm", width / 2, 40); //title
textSize(16);
text("www.keyestudio.com", width / 2, height - 20); //site

}

5.2.16 Project 17 Flower-watering Device

(1)Description

The household plants are popular in many communities. But they will die if you forget to water them, how about
making an automatic watering device? In this project, we will learn to detect the soil humidity of your plants with soil
humidity sensor and Raspberry Pi.

(2)Components Needed

Raspberry Main
Board*1

RPI GPIO-PCF8591 Shield*1 Soil Humidity Sen-
sor*1

F-F DuPont Wires

(3)Knowledge about Component

Soil Humidity Sensor

This is a simple soil humidity sensor aims to detect the soil humidity. If the soil is in lack of water, the analog value
output by the sensor will decrease; otherwise, it will increase. If you use this sensor to make an automatic watering
device, it can detect whether your botany is thirsty to prevent it from withering when you go out.

(4)Connection Diagram

Soil Humidity Sensor RPI GPIO-PCF8591 Shield
S SA0
V 5V
G G

222 Chapter 5. Processing JAVA Tutorial

keyestudio WiKi

(5)Run Example Code

Note: in the experiment, I2C communication is used. We need to check the iic address first(enter commandi2cdetect
-y 1 and press“Enter”. If failed, check the wiring is correct or not. If correct, you need to enable I2C communication
function of Raspberry Pi, project 14 is for your reference.

After enabling the I2C communication, input the following command, press“Enter”and click“RUN”on Processing IDE:

processing /home/pi/sketchbook/Processing_Code/sketch_17_soil/sketch_17_soil.pde

(6)Test Results

After running the program, when the soil humidity sensor is inserted into the land, the display window shows the analog
value of the soil humidity and the value of ADC. The voltage value changes with the humidity of the land.

(7)Example Code

5.2. 2.Projects 223

keyestudio WiKi

This program includes a few code files, the core code is in the sketch_17_soil.pde and other files consist of some
customized ones, as shown below:

Code:

import processing.io.*;
//Create a object of class ADCDevice
ADCDevice adc = new ADCDevice();
void setup() {

size(640, 360);
if (adc.detectI2C(0x48)) {
adc = new PCF8591(0x48);

}else {
println("Not found ADC Module!");
System.exit(-1);

}
}
void draw() {
int adcValue = adc.analogRead(0); //Read the ADC value of channel 0
float volt = adcValue*5.0/255.0; //calculate the voltage
background(255);
titleAndSiteInfo();

fill(0);
textAlign(CENTER); //set the text centered
textSize(30);
text("ADC: "+nf(adcValue, 3, 0), width / 2, height/2+50);
textSize(40); //set text size
text("Voltage: "+nf(volt, 0, 2)+"V", width / 2, height/2); //

}
void titleAndSiteInfo() {
fill(0);
textAlign(CENTER); //set the text centered
textSize(40); //set text size
text("ADC", width / 2, 40); //title

(continues on next page)

224 Chapter 5. Processing JAVA Tutorial

keyestudio WiKi

(continued from previous page)

textSize(16);
text("www.keyestudio.com", width / 2, height - 20); //site

}

5.2.17 Project 18Joystick

(1)Description

Many a people play games with gamepad. But do you know who it work?

Let’s learn about it.

(2)Components Needed

Raspberry Main
Board*1

RPI GPIO-PCF8591 Shield*1 Joystick Mod-
ule*1

F-F DuPont Wires

(3)Knowledge about Component

Joystick Module

This is a joystick very similar to the ‘analog’ joysticks on PS2 (PlayStation 2) controllers. It is a self-centering spring
loaded joystick, meaning when you release the joystick it will center itself. It also contains a comfortable cup-type
knob/cap which gives the feel of a thumb-stick.

It has three signal pins which are connected GND, VCC and signal endB, X, Y). The X pin is X-axis (left to right), the
Y pin is Y-axis (front and back) and signal B end is Z-axis(usually used as digital port and pushbutton)

VCC is connected to V/VCC3.3/5Vof MCU, GND to G/GND of MCU and the voltage is around 1.65V/2.5V in initial
status

X axis gives readout of the joystick in the horizontal direction (X-coordinate) i.e. how far left and right the joystick is
pushed.

Y axis gives readout of the joystick in the vertical direction (Y-coordinate) i.e. how far up and down the joystick is
pushed.

Z axis is the output from the pushbutton. It’s normally open, meaning the digital readout from the SW pin will be
HIGH. When the button is pushed, it will connect to GND, giving output LOW.

(4)Connection Diagram

5.2. 2.Projects 225

keyestudio WiKi

Joystick Module RPI GPIO-PCF8591 Shield
Y S(A0)
X S(A1)
B S(A2)
V 5V
G G

(5)Run Example Code

Note: in the experiment, I2C communication is used. We need to check the iic address first(enter commandi2cdetect
-y 1 and press“Enter”. If failed, check the wiring is correct or not. If correct, you need to enable I2C communication
function of Raspberry Pi, project 14 is for your reference.

After enabling the I2C communication, input the following command, press“Enter”and click“RUN”on Processing IDE:

processing /home/pi/sketchbook/Processing_Code/sketch_18_joystick/sketch_18_joystick.pde

(6)Test Results

This window shows the position of joystick and values of X, Y and Z axis, as shown below:

226 Chapter 5. Processing JAVA Tutorial

keyestudio WiKi

The color of circle will change if button (Z axis/B)is pressed.

(7)Example Code

A few code files are included, as shown below:

5.2. 2.Projects 227

keyestudio WiKi

Code:

import processing.io.*;
//Create a object of class ADCDevice
ADCDevice adc = new ADCDevice();
int cx, cy, cd, cr; //define the center point,side length & half.

void setup() {
size(640, 360);
if (adc.detectI2C(0x48)) {
adc = new PCF8591(0x48);

} else if (adc.detectI2C(0x4b)) {
adc = new ADS7830(0x4b);

} else {
println("Not found ADC Module!");
System.exit(-1);

}
cx = width/2; //center of the display window
cy = height/2; //
cd = (int)(height/1.5);
cr = cd /2;

}
void draw() {
int x=0, y=0, z=0;
x = adc.analogRead(1); //read the ADC of joystick
y = adc.analogRead(0); //
z = adc.analogRead(2);
background(102);
titleAndSiteInfo();
fill(0);
textSize(20);
textAlign(LEFT, TOP);
text("X:"+x+"\nY:"+y+"\nZ:"+z, 10, 10);

(continues on next page)

228 Chapter 5. Processing JAVA Tutorial

keyestudio WiKi

(continued from previous page)

fill(255); //wall color
rect(cx-cr, cy-cr, cd, cd);
fill(constrain(z, 255, 0)); //joysitck color
ellipse(map(x, 0, 255, cx-cr, cx+cr), map(y, 0, 255, cy-cr, cy+cr), 50, 50);

}
void titleAndSiteInfo() {
fill(0);
textAlign(CENTER); //set the text centered
textSize(40); //set text size
text("Joystick", width / 2, 40); //title
textSize(16);
text("www.keyestudio.com", width / 2, height - 20); //site

}

5.2. 2.Projects 229

keyestudio WiKi

230 Chapter 5. Processing JAVA Tutorial

CHAPTER

SIX

PYTHON TUTORIAL

Raspberry Pi and electronic components are controlled via Python.

6.1 1. Install Raspberry Pi OS System

6.1.1 1.1Hardware Tool

• Raspberry Pi 4B/3B/2B

• Above 8G TFT SD Card

• Card Reader

• Computer and other parts

6.1.2 1.2Software Tool

Windows System

231

keyestudio WiKi

(1) Install putty:

Download Putty:https://www.chiark.greenend.org.uk/~sgtatham/putty/

232 Chapter 6. Python Tutorial

https://www.chiark.greenend.org.uk/~sgtatham/putty/

keyestudio WiKi

After downloading the driver file double-click it and tap“Next”.

6.1. 1. Install Raspberry Pi OS System 233

keyestudio WiKi

Click“Next”.

Select“Install Putty files”and click“Install”.

234 Chapter 6. Python Tutorial

keyestudio WiKi

After a few seconds, click“Finish”.

6.1. 1. Install Raspberry Pi OS System 235

keyestudio WiKi

(2) SSH Remote Login software -WinSCP

Download WinSCP: https://winscp.net/eng/download.php

After the download, click and .

Click“Accept”.

236 Chapter 6. Python Tutorial

https://winscp.net/eng/download.php

keyestudio WiKi

Follow the below steps to finish the installation.

6.1. 1. Install Raspberry Pi OS System 237

keyestudio WiKi

238 Chapter 6. Python Tutorial

keyestudio WiKi

(3) SD Card Formatter

Format TFT card tool

Download SD Card Formatter

http://www.canadiancontent.net/tech/download/SD_Card_Formatter.html

6.1. 1. Install Raspberry Pi OS System 239

http://www.canadiancontent.net/tech/download/SD_Card_Formatter.html

keyestudio WiKi

240 Chapter 6. Python Tutorial

keyestudio WiKi

Unzip the SDCardFormatterv5_WinEN package, double-click to run it.

Click“Next”and choose , then tap“Next” .

6.1. 1. Install Raspberry Pi OS System 241

keyestudio WiKi

Click“Next”and“Install”.

242 Chapter 6. Python Tutorial

keyestudio WiKi

After a few seconds, click“Finish”.

6.1. 1. Install Raspberry Pi OS System 243

keyestudio WiKi

(4) Burn Win32DiskImager

Download Linkhttps://sourceforge.net/projects/win32diskimager/

After the download, double-click and tap“Run”.

244 Chapter 6. Python Tutorial

https://sourceforge.net/projects/win32diskimager/

keyestudio WiKi

Select and tap“Next”.

6.1. 1. Install Raspberry Pi OS System 245

keyestudio WiKi

Click“Browse. . . ”and find out the folder where the Win32DiskImager is located, tap“Next”.

246 Chapter 6. Python Tutorial

keyestudio WiKi

Tick , click“Next”and“Install”.

6.1. 1. Install Raspberry Pi OS System 247

keyestudio WiKi

After a few seconds, click“Finish”.

The installation is finished.

248 Chapter 6. Python Tutorial

keyestudio WiKi

(5) Scan to search ip address software tool—WNetWatcher

Download Linkhttp://www.nirsoft.net/utils/wnetwatcher.zip

(6) Raspberry Pi Imager

Download Address

https://www.raspberrypi.org/downloads/raspberry-pi-os/

(recommend downloading the version with desktop and commonly used software)

6.1. 1. Install Raspberry Pi OS System 249

http://www.nirsoft.net/utils/wnetwatcher.zip
https://www.raspberrypi.org/downloads/raspberry-pi-os/

keyestudio WiKi

6.2 2.Install Raspberry Pi OS on Raspberry Pi 4B

Insert TFT RAM card to card reader, then interface card reader to USB port of computer.

Format TFT RAM card with SD Card Formatter software, as shown below:

250 Chapter 6. Python Tutorial

keyestudio WiKi

6.2. 2.Install Raspberry Pi OS on Raspberry Pi 4B 251

keyestudio WiKi

252 Chapter 6. Python Tutorial

keyestudio WiKi

6.2.1 (1) Burn System

Burn the Raspberry Pi OS system to TFT card using Win32DiskImager software

6.2. 2.Install Raspberry Pi OS on Raspberry Pi 4B 253

keyestudio WiKi

254 Chapter 6. Python Tutorial

keyestudio WiKi

Don’t eject card reader after burning mirror system, build a file named SSH, then delete .txt .

The SSH login function can be activated by copying SSH file to boot category, as shown below.

6.2. 2.Install Raspberry Pi OS on Raspberry Pi 4B 255

keyestudio WiKi

Eject Card Reader

6.2.2 (2)Log in system

(Raspberry and PC should be in the same local area network.)

1.Insert TFT memory card into Raspberry Pi, connect internet cable and plug in power. If you have screen and HDMI
cable of Raspberry Pi, you could view Raspberry Pi OS activating. If not, you can enter the desktop of Raspberry Pi
via SSH remote login software—WinSCP and xrdp.

256 Chapter 6. Python Tutorial

keyestudio WiKi

2.Use the WNetWatcher software to find the IP address of the Raspberry Pi.

If there is no IP address as shown in the figure above, follow the following steps to set it.

6.2. 2.Install Raspberry Pi OS on Raspberry Pi 4B 257

keyestudio WiKi

258 Chapter 6. Python Tutorial

keyestudio WiKi

Once the setup is complete, record the IP and MAC addresses of the Raspberry PI. As shown in the red box below, the
MAC address of the Raspberry PI is b8:27:eb:17:16:01, and the ip address is 192.168.0.57.

6.2. 2.Install Raspberry Pi OS on Raspberry Pi 4B 259

keyestudio WiKi

If you do not know the mac address and the ip address of the Raspberry PI, then unplug the network cable of the
Raspberry PI first, open the WNetWatcher query, and the detection times will be displayed on the right side of the
interface. Connect the Raspberry PI cable and query it once using WNetWatcher, and the Raspberry PI address is
detected one less time than the other addresses. Then write down the ip and mac addresses.

6.2.3 (3) Remote Login

Enter default user name, password and host name on WinSCP to log in.

The same network only receives one Raspberry Pi.

260 Chapter 6. Python Tutorial

keyestudio WiKi

6.2. 2.Install Raspberry Pi OS on Raspberry Pi 4B 261

keyestudio WiKi

262 Chapter 6. Python Tutorial

keyestudio WiKi

6.2.4 (4) Check ip and mac address

Click to open terminal input the passwordraspberry, and press“Enter”on keyboard.

6.2. 2.Install Raspberry Pi OS on Raspberry Pi 4B 263

keyestudio WiKi

Logging in successfully, open the terminal, input ip a and tap“Enter”to check ip and mac address.

264 Chapter 6. Python Tutorial

keyestudio WiKi

6.2.5 (5) Fix ip address of Raspberry Pi

Ip address is changeable, therefore, we need to make ip address fixed for convenient use.

Follow the below steps

Switch to root user

If without root user’s password

Set root passward

Input passwordin the terminalsudo passwd root to set password

Switch to root user

Input su root

Fix the configuration file of ip address

Firstly change ip address of the following configuration file.

#New ip addressaddress 192.168.0.57

Copy the above new address to terminal and press“Enter”.

Configuration File

echo -e '

auto eth0

iface eth0 inet static
(continues on next page)

6.2. 2.Install Raspberry Pi OS on Raspberry Pi 4B 265

keyestudio WiKi

(continued from previous page)

\#Change IP address

address 192.168.0.57

netmask 255.255.255.0

gateway 192.168.1.1

network 192.168.1.0

broadcast 192.168.1.255

dns-domain 119.29.29.29

dns-nameservers 119.29.29.29

metric 0

mtu 1492

'\>/etc/network/interfaces.d/eth0

As shown below:

Reboot the system and activate the configuration file

Input the restart command in the terminal: sudo reboot

You could log in via fixed ip afterwards.

Check IP and insure ip address fixed well

266 Chapter 6. Python Tutorial

keyestudio WiKi

6.2.6 (6) Log in Desktop on Raspberry Pi Wirelessly

In fact, we can log in desktop on Raspberry Pi Wirelessly even without screen and HDMI cable.

VNC and Xrdp are commonly used to log in desktop of Raspberry Pi wirelessly.

Install Xrdp Service in the terminal

Installation commands:

Switch to Root User: su root

Install apt-get install xrdp

Enter y and press “Enter”

As shown below:

6.2. 2.Install Raspberry Pi OS on Raspberry Pi 4B 267

keyestudio WiKi

6.2.7 (7) Open the remote desktop connection on Windows

Press WIN+R on keyboard and enter mstsc.exe .

As shown below

Input ip address of Raspberry Pi, as shown below.

Click“Connect”and tap“Connect”.

192.168.0.57 is ip address we use, you could change into yours ip address.

268 Chapter 6. Python Tutorial

keyestudio WiKi

Click“Yes”.

Input user name: pi, default password: raspberry, as shown below:

6.2. 2.Install Raspberry Pi OS on Raspberry Pi 4B 269

keyestudio WiKi

Click“OK”or“Enter”, you will view the desktop of Raspberry Pi OS, as shown below:

Now, we finish the basic configuration of Raspberry Pi OS.

270 Chapter 6. Python Tutorial

keyestudio WiKi

6.3 3. Preparations for Python

Python is a programming language that lets you work more quickly and integrate your systems more effectively.

Python is an interpreted, high-level and general-purpose programming language. Python’s design philosophy em-
phasizes code readability with its notable use of significant whitespace. Its language constructs and object-oriented
approach aim to help programmers write clear, logical code for small and large-scale projects.

Next to pick up Python to control 40 pin of Raspberry Pi.

6.3.1 3.1Hardware

Raspberry Pi 4B

Raspberry Pi 4B Raspberry Pi 4B Model

6.3. 3. Preparations for Python 271

keyestudio WiKi

Hardware Interfaces

40-Pin GPIO Header Description

GPIO pins are divided into BCM GPIO number, physics number and WiringPi GPIO number.

We usually use WiringPi GPIO when using C language and BCM GPIO and physics number are used to Python, as
shown below;

In these lessons, we use Python, so BCM GPIO number is adopted.

Note: pin(3.3V) on the left hand is square, but other pins are round. Turn Raspberry Pi over, there is a square GPIO on
the back.(you could tell from pin(3.3V).

272 Chapter 6. Python Tutorial

keyestudio WiKi

Note: the largest current of each pin on Raspberry Pi 4B is 16mA and the aggregate current of all pins is not less than
51mA.

RPI GPIO-PCF8591 Shield

This shield extend 40 pins of Raspberry Pi, which can connect a number of sensors and modules.

6.3. 3. Preparations for Python 273

keyestudio WiKi

The Raspberry Pie doesn’t have an AD / DA function. If it has to be interfaced with a shield with AD / DA function
when connected to an analog sensor. The RPI GPIO-PCF8591 shield has a PCF8591 chip which can be applied to
4-channel AD and 1-channel DA of I2C port.

The connection methods of Raspberry Pi and RPI GPIO-PCF8591 shield are shown below:

Fix them with screws, nuts and copper pillars

274 Chapter 6. Python Tutorial

keyestudio WiKi

Without screws, nuts and copper pillars

6.3. 3. Preparations for Python 275

keyestudio WiKi

6.3.2 3.2Copy Example Code Folder to Raspberry Pi

Place the pythonCode_A.zip folder to the pi folder of Raspberry Pi. And extract the example code from pythonCode_A
folder, as shown below:

276 Chapter 6. Python Tutorial

keyestudio WiKi

6.3. 3. Preparations for Python 277

keyestudio WiKi

Double-click the pythonCode_A folder to look through compiled files, as shown below:

278 Chapter 6. Python Tutorial

keyestudio WiKi

Set the default editor of file with .py

Right-click“Open with. . . ”

6.3. 3. Preparations for Python 279

keyestudio WiKi

Click Programming to select Geany Programmer’s Editor.

280 Chapter 6. Python Tutorial

keyestudio WiKi

Then, we can directly double-click Geany Programmer’s Editor to open .py files.

Run _HelloWorld.py file to print“Hello World”

One is to double-click 1_HelloWorld.py and tap to compile code and check grammar errors. After successful

compilation, tap to run the code. At same time, terminal appears and prints“hello world”

6.3. 3. Preparations for Python 281

keyestudio WiKi

282 Chapter 6. Python Tutorial

keyestudio WiKi

The other way is to open terminal directly, input the following commands and press“Enter”to print“hello world”

cd pythonCode_A

python 1_HelloWorld.py

6.3. 3. Preparations for Python 283

keyestudio WiKi

6.4 4. Projects

Note: G, - and GND marked on sensors and modules are so-called negative, which are connected to GND or G
of GPIO board or; V and VCC are known as positive, which are interfaced with 3V3 or 5V on GPIO-PCF8591
shield.

6.4.1 Project 1Python3 Shell

Use Windows remote desktop connection to enter the page of Raspberry Pi, then open its terminal.

284 Chapter 6. Python Tutorial

keyestudio WiKi

Input python3 in the terminal and press“Enter”to enter the python3 shell’s editing interface, then enter
print(“hello,world!”) and press“Enter”. The“hello,world!” will be output.

6.4. 4. Projects 285

keyestudio WiKi

You may find function print() is used to print data.

You can print data with other type, like Mathematical formula:

print(1+5)

Variable a = 2 b = 5

print(a*b)

As shown below:

286 Chapter 6. Python Tutorial

keyestudio WiKi

Input exit() to exit python3 shell.

6.4. 4. Projects 287

keyestudio WiKi

6.4.2 Project 2LED Blinks

1. Description

Let’s start from a rather basic and simple experiment—-LED Blinks.

2. Components

Raspberry Pi*1 RPI GPIO-PCF8591
Shield*1

White LED Module*1 F-F DuPont Wires

3. Component Description

The white LED module is a commonly used LED module. It is a F5 LED with white appearance and white light
display. During experiments, when the G and V on the module are powered up and the signal end S is at high level ,the
white LED is on while when the S is at low level, the LED is off.

Modules are compatible with a variety of microcontroller control boards, such as Arduino microcontrollers and white
LED module.

4. Schematic Diagram

White LED Module RPI GPIO-PCF8591 Shield
S SIO18
V 5V
G G

5. The principle to control the LED

According to the connection diagram, the positive (V) of the white LED module is connected to 5V, the negative polar
(g) is interfaced with the GND, and the signal terminal (S) is connected to the GPIO18 pin. When the GPIO18 pin
outputs high levels, the LED light will be on. When the GPIO18 outputs low levels, the LED lamp is off.

288 Chapter 6. Python Tutorial

keyestudio WiKi

6. Run Example Code

Input the following commands in the terminal and press“Enter”:

cd /home/pi/pythonCode_A

python 2_Led_Blink.py

7. Test Results

LED is flashing and the terminal is printing

Note: Press Ctrl + C on keyboard to exit code running

8. Example Code

import RPi.GPIO as GPIO
import time

ledPin = 18 #define led pin

GPIO.setmode(GPIO.BCM) # use BCM numbers
GPIO.setup(ledPin,GPIO.OUT) #set the ledPin OUTPUT mode
GPIO.output(ledPin,GPIO.LOW) # make ledPin output LOW level

while True: #loop
GPIO.output(ledPin,GPIO.HIGH) #turn on led
print("turned on the led") #Print in the terminal
time.sleep(1) #wait for 1 second
GPIO.output(ledPin,GPIO.LOW) #turn off led
print("turned off the led")
time.sleep(1)

GPIO.cleanup() #release all GPIO

6.4. 4. Projects 289

keyestudio WiKi

9. Explanation

CODE EXPLANATION
While While is the loop statement of python, when the condition is true, the program will be executed always

be executed.
import
RPi.GPIO
as GPIO

Import RPi.GPIO library, which can be used to control the digital output of Raspberry Pi and PWM out-
put. GPIO.setmode(GPIO.BCM) There are many definitions about pins of Raspberry Pi, on this condi-
tion, we definite pin as BCM digital pin. More resource https://sourceforge.net/p/raspberry-gpio-python/
wiki/Examples/

import
time

Import time library, time.sleep(1) means waiting for a second, more resource https://sourceforge.net/p/
raspberry-gpio-python/wiki/Examples/

6.4.3 Project 3: SOS Light

1. Description

S.O.S is a Morse code distress signal, used internationally, that was originally established for maritime use. We will
present it with flashing LED.

2. Components:

Raspberry Main Board*1 RPI GPIO-PCF8591
Shield*1

White LED Module *1 F-F DuPont Wires

3. Schematic Diagram

White LED Module RPI GPIO-PCF8591 Shield
S SIO18
V 5V
G G

290 Chapter 6. Python Tutorial

https://sourceforge.net/p/raspberry-gpio-python/wiki/Examples/
https://sourceforge.net/p/raspberry-gpio-python/wiki/Examples/
https://sourceforge.net/p/raspberry-gpio-python/wiki/Examples/
https://sourceforge.net/p/raspberry-gpio-python/wiki/Examples/

keyestudio WiKi

4. Run Example Code

Input the following commands in the terminal and press“Enter”:

cd /home/pi/pythonCode_A

python 3_LED_SOS.py

5. Test Results

LED flashes for three times at once then flashes three times slowly, alternately.

And terminal prints . . . _ _ _ . . . , as shown below:

Note: Press Ctrl + C on keyboard to exit code running

6. Example Code:

import RPi.GPIO as GPIO
import time

ledPin = 18 #define led pin
i1 = 0
i2 = 0
i3 = 0

GPIO.setmode(GPIO.BCM) # use BCM numbers
GPIO.setup(ledPin,GPIO.OUT) #set the ledPin OUTPUT mode
GPIO.output(ledPin,GPIO.LOW) # make ledPin output LOW level

while True: #loop
while(i1<3):

GPIO.output(ledPin,GPIO.HIGH) #turn on led
time.sleep(0.1) #wait for 1 second
GPIO.output(ledPin,GPIO.LOW) #turn off led
time.sleep(0.1)
print(".")
i1 += 1

(continues on next page)

6.4. 4. Projects 291

keyestudio WiKi

(continued from previous page)

while(i2<3):
GPIO.output(ledPin,GPIO.HIGH) #turn on led
time.sleep(1) #wait for 1 second
GPIO.output(ledPin,GPIO.LOW) #turn off led
time.sleep(1)
print("_")
i2 += 1

while(i3<3):
GPIO.output(ledPin,GPIO.HIGH) #turn on led
time.sleep(0.1) #wait for 1 second
GPIO.output(ledPin,GPIO.LOW) #turn off led
time.sleep(0.1)
print(".")
i3 += 1

time.sleep(3)
i1 = 0
i2 = 0
i3 = 0

GPIO.cleanup() #release all GPIO

6.4.4 Project 4: Breathing LED

1. Description

A“breathing LED”is a phenomenon where an LED’s brightness smoothly changes from dark to bright and back to dark,
continuing to do so and giving the illusion of an LED“breathing.”This phenomenon is similar to a lung breathing in
and out. So how to control LED’s brightness? We need to take advantage of PWM.

2. Components

Raspberry Pi*1 RPI GPIO-PCF8591
Shield*1

Red LED Module*1 F-F DuPont Wires

292 Chapter 6. Python Tutorial

keyestudio WiKi

3. Working Principle

We use the PWM output of GPIO, PWM outputs analog signals and output value is 0~100 which is equivalent to output
voltage 0~3.3V from GPIO port.

According to Ohm’s law: U/R = I, the resistance is 220, and the value of voltage U changes, so does the value of current
I, which can control the brightness of the LED lamp.

PWM (Pulse Width Modulation) is the control of the analog circuit through the digital output of microcomputer and a
method that making digital coding on analog signal levels.

It sends square waves with certain frequency through digital pins, that is, high level and low level are output alternately
for a period of time. Total time of each group high and low level is fixed, which is called cycle.

The time of high level output is pulse width whose percentage is called Duty Cycle. The longer that high level lasts,
the larger the duty cycle of analog signals is, the corresponding voltage as well.

Below chart is pulse width 50%, then the output voltage is 3.3 * 50% = 1.65Vthe brightness of LED is medium.

6.4. 4. Projects 293

keyestudio WiKi

4.Schematic Diagram

Red LED Module RPI GPIO-PCF8591 Shield
S SIO18
V 5V
G G

5. Run Example Code

Input the following commands in the terminal and press“Enter”:

cd /home/pi/pythonCode_A

python 4_Led_Breath.py

6. Test Results

LED gradually brightens then darkens.

Note: Press Ctrl + C on keyboard to exit code running

7. Example Code

import RPi.GPIO as GPIO
import time

ledPin = 18 #define led pin

GPIO.setmode(GPIO.BCM) # use BCM numbers
GPIO.setup(ledPin,GPIO.OUT) #set the ledPin OUTPUT mode
GPIO.output(ledPin,GPIO.LOW) # make ledPin output LOW level
pwm = GPIO.PWM(18,100) #create a PWM instance
pwm.start(0) #start PWM

(continues on next page)

294 Chapter 6. Python Tutorial

keyestudio WiKi

(continued from previous page)

def brighten(): #define function
for i in range(0,100,+1):

pwm.ChangeDutyCycle(i) #change the frequency,To lighten gradually
time.sleep(0.01)

def darken():
for i in range(100,0,-1):

pwm.ChangeDutyCycle(i) #To darken gradually
time.sleep(0.01)

while True: #loop
brighten() #call function
darken()

pwm.stop() #stop PWM

GPIO.cleanup() #release all GPIO

6.4.5 Project 5: Traffic Lights

1. Description

In this lesson, we will learn how to control multiple LED lights and simulate the operation of traffic lights.

Traffic lights are signaling devices positioned at road intersections, pedestrian crossings, and other locations to control
flows of traffic.

Green light on: Allows traffic to proceed in the direction denoted, if it is safe to do so and there is room on the other
side of the intersection.

Red light: Prohibits any traffic from proceeding. A flashing red indication requires traffic to stop and then proceed
when safe (equivalent to a stop sign).

Amber light (also known as ‘orange light’ or ‘yellow light’):

Warns that the signal is about to change to red, with some jurisdictions requiring drivers to stop if it is safe to do so,
and others allowing drivers to go through the intersection if safe to do so.

2. Components

Raspberry Pi*1 RPI GPIO-PCF8591
Shield*1

Traffic Light Module*1 F-F DuPont Wires

6.4. 4. Projects 295

keyestudio WiKi

3. Schematic Diagram

Traffic Light Module RPI GPIO-PCF8591 Shield
R IO18
Y IO23
G IO24
GND GND

4. Run Example Code

Input the following commands in the terminal and press“Enter”:

cd /home/pi/pythonCode_A

python 5_traffic_light.py

5. Test Results

Red light is on 5s and off, yellow light flashes 3s and off, green light is lit for 5s and off, in loop way.

Note: Press Ctrl + C on keyboard to exit code running.

6. Example Code

import RPi.GPIO as GPIO
from time import sleep

#LED pin
R = 18
Y = 23
G = 24

GPIO.setmode(GPIO.BCM) # use BCM numbers
GPIO.setup(R,GPIO.OUT) #set the ledPin OUTPUT mode
GPIO.setup(Y,GPIO.OUT)

(continues on next page)

296 Chapter 6. Python Tutorial

keyestudio WiKi

(continued from previous page)

GPIO.setup(G,GPIO.OUT)

GPIO.output(R,GPIO.LOW)
GPIO.output(Y,GPIO.LOW)
GPIO.output(G,GPIO.LOW)

while True:
GPIO.output(R,GPIO.HIGH)
sleep(5)
GPIO.output(R,GPIO.LOW)

GPIO.output(Y,GPIO.HIGH) #turn on yellow_led
sleep(0.5)
GPIO.output(Y,GPIO.LOW) #turn off yellow_led
sleep(0.5)
GPIO.output(Y,GPIO.HIGH)
sleep(0.5)
GPIO.output(Y,GPIO.LOW)
sleep(0.5)
GPIO.output(Y,GPIO.HIGH)
sleep(0.5)
GPIO.output(Y,GPIO.LOW)
sleep(0.5)

GPIO.output(G,GPIO.HIGH) #turn on green_led
sleep(5) #delay 5s
GPIO.output(G,GPIO.LOW) #turn off green_led

GPIO.cleanup() #release all GPIO

6.4.6 Project 6Illuminating Lamp

1. Description

Lights are everywhere in our life. In this chapter, we use a 3W LED module with high brightness. What’s more, we
apply it into smart robots.

2. Components

Raspberry Pi*1 RPI GPIO-PCF8591
Shield*1

3W LED Module*1 F-F DuPont Wires

6.4. 4. Projects 297

keyestudio WiKi

3. Schematic Diagram

3W LED Module RPI GPIO-PCF8591 Shield
S SIO18
V 5V
G G

4. Run Example Code

Input the following commands in the terminal and press“Enter”:

cd /home/pi/pythonCode_A

python 6_3W_Led.py

5. Test Results

Upload the code, then this 3w LED is on.

Note: Press Ctrl + C on keyboard to exit code running

6. Example Code

import RPi.GPIO as GPIO
import time

ledPin = 18 #define led pin

GPIO.setmode(GPIO.BCM) # use BCM numbers
GPIO.setup(ledPin,GPIO.OUT) #set the ledPin OUTPUT mode
GPIO.output(ledPin,GPIO.LOW) # make ledPin output LOW level

(continues on next page)

298 Chapter 6. Python Tutorial

keyestudio WiKi

(continued from previous page)

while True: #loop
GPIO.output(ledPin,GPIO.HIGH) #turn on led
print("turned on the led") #Print in the terminal

GPIO.cleanup() #release all GPIO

6.4.7 Project 7RGB Light

1. Description

In this chapter, we will demonstrate how RGB lights show different colors via programming.

2. Components

Raspberry Pi*1 RPI GPIO-PCF8591
Shield*1

RGB Module*1 F-F Dupont Wires

3. Component Knowledge

Working Principle

The RGB module integrates with three LEDs in red, green and blue respectively. These three LEDs also share the same
anode. The combinations of these three colors can form almost all other colors visible to human eyes. Thus, it has
found wide applications in terms of colors.

6.4. 4. Projects 299

keyestudio WiKi

Red, green and blue are three primary colors. They could produce all kinds of visible lights when mixing them up.
Computer screen, single pixel mobile phone screen, neon light work under this principle.

Next, we will make a RGB LED display all kinds of colors.

4. Schematic Diagram

RGB Module RPI GPIO-PCF8591 Shield
R IO24
G IO23
B IO18
V 5V

5. Run Example Code

Input the following commands in the terminal and press“Enter”:

cd /home/pi/pythonCode_A

python 7_RGB_led.py

6. Test Results

RGB light shows colors randomly.

Note: Press Ctrl + C on keyboard to exit code running.

300 Chapter 6. Python Tutorial

keyestudio WiKi

7. Example Code

import RPi.GPIO as GPIO
from time import sleep
import random

#define RGB pin
pin_R = 24
pin_G = 23
pin_B = 18
GPIO.setmode(GPIO.BCM) # use BCM numbers
#set the RGB Pin OUTPUT mode
GPIO.setup(pin_R,GPIO.OUT)
GPIO.setup(pin_G,GPIO.OUT)
GPIO.setup(pin_B,GPIO.OUT)

makeRGB Pin output LOW level
GPIO.output(pin_R,GPIO.LOW)
GPIO.output(pin_G,GPIO.LOW)
GPIO.output(pin_B,GPIO.LOW)

#set pwm frequence to 1000hz
pwm_R = GPIO.PWM(pin_R,100)
pwm_G = GPIO.PWM(pin_G,100)
pwm_B = GPIO.PWM(pin_B,100)
#set inital duty cycle to 0
pwm_R.start(0)
pwm_G.start(0)
pwm_B.start(0)

#function. receive the value to display different colors
def setColor(val_R,val_G,val_B):

pwm_R.ChangeDutyCycle(val_R)
pwm_G.ChangeDutyCycle(val_G)
pwm_B.ChangeDutyCycle(val_B)

while True:
get a random in 0~100
R = random.randint(0,100)
G = random.randint(0,100)
B = random.randint(0,100)
setColor(R,G,B) #set the color value
print('Red=%d, Green = %d, Blue = %d' %(R, G, B))
sleep(0.2)

#stop pwm
pwm_R.stop()
pwm_G.stop()
pwm_B.stop()

GPIO.cleanup() #release all GPIO

6.4. 4. Projects 301

keyestudio WiKi

6.4.8 Project 8Doorbell

1. Description

Doorbells have made our daily life more convenient. When a guest arrives, we will get this information when he/she
rings the bell. In this project, we will learn to make a doorbell by ourselves.

2. Components

Raspberry Pi*1 RPI GPIO-
PCF8591 Shield*1

Active Buzzer*1 Push Button Sen-
sor*1

F-F DuPont Wires

3. Components Knowledge:

Active buzzer

An active buzzer will generate a tone using an internal oscillator, so all that is needed is a DC voltage. A passive buzzer
requires an AC signal to make a sound. It is like an electromagnetic speaker, where a changing input signal produces
the sound, rather than producing a tone automatically.

As a type of electronic buzzer with integrated structure, buzzers, which are supplied by DC power, are widely used in
computers, printers, photocopiers, alarms, electronic toys, automotive electronic devices, telephones, timers and other
electronic products for voice devices. Buzzers can be categorized as active and passive ones (see the following picture).
Turn the pins of two buzzers face up, and the one with a green circuit board is a passive buzzer, while the other enclosed
with a black tape is an active one.

Button switch: it can control circuit. Before pressed, the current can’t pass from one end to the other end. Both ends
are like two mountains. There is a river in between. We can’t cross this mountain to another mountain. When pressed,
my internal metal piece is connecting the two sides to let the current pass, just like building a bridge to connect the two
mountains.

Inner structure: .

1 and 1 , 2 and 2 are connected , however, 1 and 2 are disconnected when the button is not pressed; 1 and 2 are connected
when pressing the button.

302 Chapter 6. Python Tutorial

keyestudio WiKi

4. Schematic Diagram

Active Buzzer RPI GPIO-PCF8591 Shield Push Button Sensor RPI GPIO-PCF8591 Shield

S SIO16 S SIO18

V 5V V 5V

G G G G

5. Run Example Code

Input the following commands in the terminal and press“Enter”:

cd /home/pi/pythonCode_A

python 8_active_buzzer.py

6. Test Results

The buzzer will emit sounds and terminal will print 0 if the button is pressed; otherwise, buzzer will keep quiet and
terminal will output 1.

Note: Press Ctrl + C on keyboard to exit code running.

7. Example Code

import RPi.GPIO as GPIO
from time import sleep

#active buzzer pin
buzPin = 16
#button pin
btnPin = 18

(continues on next page)

6.4. 4. Projects 303

keyestudio WiKi

(continued from previous page)

GPIO.setmode(GPIO.BCM) # use BCM numbers
GPIO.setup(buzPin,GPIO.OUT) #set buzPin OUTPUT mode
GPIO.setup(btnPin,GPIO.IN,GPIO.PUD_UP) # set btnPin INPUT mode and btnPin to PULL UP

while True:
val = GPIO.input(btnPin)
print(val)
if(val == 0): #Judge whether the button is pressed

GPIO.output(buzPin,GPIO.HIGH) #Buzzer ring
else:

GPIO.output(buzPin,GPIO.LOW) #buzzer off

GPIO.cleanup() # Release all GPIO

6.4.9 Project 9: Passive Buzzer

1. Description

We will conduct an interesting experiment—–control passive buzzer to compose a song.

2. Components

Raspberry Pi*1 RPI GPIO-PCF8591
Shield*1

Passive Buzzer*1 F-F DuPont Wires

3. Component Knowledge

Passive buzzer

Passive buzzer is a type of electronic buzzer with integrated structure.

Buzzers can be categorized as active and passive ones (see the following picture).

304 Chapter 6. Python Tutorial

keyestudio WiKi

An active buzzer has a built-in oscillating source, so it will make sounds when electrified. But a passive buzzer does
not have such source, so it will not tweet if DC signals are used; instead, you need to use square waves whose frequency
is between 2K and 5K to drive it. The active buzzer is often more expensive than the passive one because of multiple
built-in oscillating circuits.

Turn the pins of two buzzers face up, and the one with a green circuit board is a passive buzzer, while the other enclosed
with a black tape is an active one, as shown

Passive buzzer provides alternating current to sound coils to make electronic magnet and permanent magnet attraction
or repulsion so as to push vibration film to emit sound, according to electromagnetic induction.

Only certain frequency with high and low levels can make passive buzzer emit sound, since DC current only makes
vibration film vibrated continuously rather than producing sound.

4. Schematic Diagram

Passive Buzzer RPI GPIO-PCF8591 Shield
S SIO18
V 5V
G G

5. Run Example Code1

Input the following commands in the terminal and press“Enter”:

cd /home/pi/pythonCode_A

python 9.1_passive_buzzer.py

6.4. 4. Projects 305

keyestudio WiKi

6. Test Results1

Passive emits“tick ,tick”sounds.

Note: Press Ctrl + C on keyboard to exit code running.

7. Example Code1

#!/usr/bin/env python
-*- coding: utf-8 -*-

import time
import RPi.GPIO as GPIO

buzPin = 18
i1 = 0
i2 = 0
GPIO.setmode(GPIO.BCM)
GPIO.setup(buzPin, GPIO.OUT)

try:
while 1: #loop

while(i1<50):
GPIO.output(buzPin,GPIO.HIGH)
time.sleep(0.001) #wait for 1 ms
GPIO.output(buzPin,GPIO.LOW)
time.sleep(0.001)
i1 = i1 + 1

time.sleep(0.3)
while(i2<50):

GPIO.output(buzPin,GPIO.HIGH)
time.sleep(0.001) #wait for 1 ms
GPIO.output(buzPin,GPIO.LOW)
time.sleep(0.001)
i2 = i2 + 1

time.sleep(1)
i1 = 0
i2 = 0

except KeyboardInterrupt:
pass

p.stop() #stop pwm
GPIO.cleanup() #release all GPIO

306 Chapter 6. Python Tutorial

keyestudio WiKi

8. Run Example Code 2

Input the following commands in the terminal and press“Enter”:

cd /home/pi/pythonCode_A

python 9.2_passive_buzzer.py

9. Test Results 2

Passive buzzer plays a“Happy Birthday”song.

Note: Press Ctrl + C on keyboard to exit code running.

10. Example Code2

-*- coding: utf-8 -*-
import RPi.GPIO as GPIO
import time

Buzzer = 18 # set the Pin

Happy birthday
Do = 262
Re = 294
Mi = 330
Fa = 349
Sol = 392
La = 440
Si = 494
Do_h = 523
Re_h = 587
Mi_h = 659
Fa_h = 698
Sol_h = 784
La_h = 880
Si_h = 988

The tune
song_1 = [

Sol,Sol,La,Sol,Do_h,Si,
Sol,Sol,La,Sol,Re_h,Do_h,
Sol,Sol,Sol_h,Mi_h,Do_h,Si,La,
Fa_h,Fa_h,Mi_h,Do_h,Re_h,Do_h

]
delay
beat_1 = [

0.5,0.5,1,1,1,1+1,
0.5,0.5,1,1,1,1+1,
0.5,0.5,1,1,1,1,1,
0.5,0.5,1,1,1,1+1,

]

(continues on next page)

6.4. 4. Projects 307

keyestudio WiKi

(continued from previous page)

def setup():
GPIO.setmode(GPIO.BCM) # Numbers GPIOs by physical location
GPIO.setup(Buzzer, GPIO.OUT) # Set pins' mode is output
global Buzz # Assign a global variable to replace GPIO.PWM
Buzz = GPIO.PWM(Buzzer, 440) # 440 is initial frequency.
Buzz.start(50) # Start Buzzer pin with 50% duty ration

def loop():
while True:

print('\n Playing song 3...')
for i in range(0, len(song_1)): # Play song 1

Buzz.ChangeFrequency(song_1[i]) # Change the frequency along the song note
time.sleep(beat_1[i] * 0.5) # delay a note for beat * 0.5s

def destory():
Buzz.stop() # Stop the buzzer
GPIO.output(Buzzer, 1) # Set Buzzer pin to High
GPIO.cleanup() # Release resource

if __name__ == '__main__': # Program start from here
setup()
try:

loop()
except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the child program destroy()␣

→˓will be executed.
destory()

6.4.10 Project 10Button-controlled LED

1. Description

Usually, a complete open loop control is made of external information input. Controller and actuator.

The external information is input into controller which can analyze the input data and send to control signals to make
actuator to react.

A button-controlled LED is decided by an open loop control. Next, we will make a desk lamp with a button, an LED
and RPi. LED is on when button is pressed, on the contrary, it will be off.

308 Chapter 6. Python Tutorial

keyestudio WiKi

2. Components

Raspberry Pi*1 RPI GPIO-
PCF8591 Shield*1

Red LED Mod-
ule*1

Push Button Sen-
sor*1

F-F DuPont Wires

3. Schematic Diagram

Red LED Module RPI GPIO-PCF8591 Shield Push Button Sensor RPI GPIO-PCF8591 Shield

S SIO16 S SIO18

V 5V V 5V

G G G G

4. Eliminate Button Shaking

The LED status won’t jump into new state immediately when button is pressed. There will be a short continuous
shaking before into new status, which is similar with release status.

6.4. 4. Projects 309

keyestudio WiKi

Therefore, there will be many a presses and release actions. The shaking will misleads the high speed movement of
MCU, causing wrong judgement. That requires that we need to judge the button’ status frequently.

The button means being pressed when its status is stable.

5. Run Example Code

Input the following commands in the terminal and press“Enter”:

cd /home/pi/pythonCode_A

python 10_button_led.py

310 Chapter 6. Python Tutorial

keyestudio WiKi

6. Test Results

Press the button, LED turns on, then press it again, LED is off.

Note: Press Ctrl + C on keyboard to exit code running.

7. Example Code

import RPi.GPIO as GPIO
from time import sleep

LED = 16 #set ledPin
button = 18 #set buttonPin
val = 0 #Button variables
count = 0 #Record the number of button presses
flag = 0 #Odd even variable
GPIO.setmode(GPIO.BCM) # use BCM numbers

GPIO.setup(LED,GPIO.OUT) #set the ledPin OUTPUT mode
GPIO.setup(button,GPIO.IN,GPIO.PUD_UP) #set the buttonPin INPUT mode and buttonPin to␣
→˓PULL UP

while True:
val = GPIO.input(button) #Receive button value
#print("button = %d"%(val))
if(val == 0): #if button is pressed

sleep(0.01) #Eliminate button jitter
val = GPIO.input(button) #Receive button value
if(val == 1): #Loosen the button

count = count + 1 #Count the number of clicks on the button
print("count = %d" %count)

flag = count % 2 #Remainder 2 ,Even is 0, odd is 1
if(flag == 1):

GPIO.output(LED,GPIO.HIGH) #turn on led
else:

GPIO.output(LED,GPIO.LOW) #turn off led

GPIO.cleanup() #release all GPIO

6.4.11 Project 11PIR Motion Sensor

1. Description

In this lesson, we will learn about PIR motion sensor.

6.4. 4. Projects 311

keyestudio WiKi

2. Components

Raspberry Pi*1 RPI GPIO-
PCF8591 Shield*1

Red LED Mod-
ule*1

PIR Motion Sen-
sor*1

F-F DuPont Wires

3. Component Knowledge

PIR Motion Sensor

The principle of human infrared sensor is that when certain crystals, such as lithium tantalite and triglyceride sulfate,
are heated, the two ends of the crystal will generate an equal number of charges, with opposite signs, which can be
converted into voltage output by an amplifier.

Human body will emit IR ray, although weak but can be detected. Sensor will output high level(1) when human being
is detected by sensor, otherwise, it will output low level(o).

Note: Nothing but moving person can be detected, with the detection distance is up to 3m.

4. Schematic Diagram

Red LED Module RPI GPIO-PCF8591 Shield PIR Motion Sensor RPI GPIO-PCF8591 Shield

S SIO5 S SIO18

V 5V V 5V

G G G G

312 Chapter 6. Python Tutorial

keyestudio WiKi

5. Run Example Code

Input the following commands in the terminal and press“Enter”:

cd /home/pi/pythonCode_A

python 11_PIR_led.py

6. Test Results

LED will turn on and terminal will print somebody if the PIR motion sensor detects people; if not, LED will be off
and terminal will print nobody.

Note: Press Ctrl + C on keyboard to exit code running.

7. Example Code

import RPi.GPIO as GPIO
import time

GPIO.setmode(GPIO.BCM)
GPIO.setwarnings(False)

ledPin = 5 #set led pin
pirPin = 18 #set PYE-IR pin
GPIO.setup(ledPin,GPIO.OUT)
GPIO.setup(pirPin,GPIO.IN)

while True: ##loop
if GPIO.input(pirPin): #When someone is detected

GPIO.output(ledPin,GPIO.HIGH) #turn on the led
print("somebody")

else:
GPIO.output(ledPin,GPIO.LOW) #turn off led
print("nobody")

GPIO.cleanup()

6.4.12 Project 12Fire Alarm

1. Description

A flame detector is a sensor designed to detect and respond to the presence of a flame or fire, allowing flame detection.

6.4. 4. Projects 313

keyestudio WiKi

2. Components

Raspberry Pi*1 RPI GPIO-PCF8591
Shield*1

Active Buzzer*1 Flame Sensor*1 F-F DuPont Wires

3. Component Knowledge

Flame Sensor

Flame sensor is made based on the principle that infrared ray is highly sensitive to flame. It has an infrared receiving
tube specially designed to detect fire, and then convert the flame brightness to fluctuating level signal. The signals are
then input into the central processor and be dealt with accordingly.

Flame sensor is used to detect fire source with wavelength in 760nm1100nm, detection angle is 60°. When its IR waves
length is close to 940nm, and its sensitivity is highest.

Notice that keep flame sensor away from fire source to defend its damage for its working temperature is between -25°-
85°

Note: You can rotate the potentiometer on the module to adjust module’s sensitivity

4. Schematic Diagram

Active Buzzer RPI GPIO-PCF8591 Shield Flame Sensor RPI GPIO-PCF8591 Shield

S SIO16 D0 SIO18

V 5V VCC 5V

G G GND G

314 Chapter 6. Python Tutorial

keyestudio WiKi

5. Run Example Code

Input the following commands in the terminal and press“Enter”:

cd /home/pi/pythonCode_A

python 12_flame_buzzer.py

6. Test Results

When the flame is detected, the buzzer will make a sound and the terminal will print low level 0, LED1 will be on;
otherwise, no sound will be emitted, the terminal will print high level 1 and LED1 will be off.

Buzzer will alarm when detecting fire; otherwise, it will stop emitting sound.

Note: Press Ctrl + C on keyboard to exit code running.

7. Example Code

import RPi.GPIO as GPIO
from time import sleep

#define buzzer pin
buzPin = 16
#define flame Pin
flamePin = 18

val = 0 #

GPIO.setmode(GPIO.BCM) #use BCM numbers
GPIO.setup(buzPin,GPIO.OUT) #set the buzPin OUTPUT
GPIO.setup(flamePin,GPIO.IN,GPIO.PUD_UP) #set the flamePin INPUT

while True:
val = GPIO.input(flamePin) #Receives the value of the flame sensor
print("val = %d" %val)
if (val == 0): #When flame is detected

GPIO.output(buzPin,GPIO.HIGH) #Buzzer turn on
else:

GPIO.output(buzPin,GPIO.LOW) #buzzer turn off
(continues on next page)

6.4. 4. Projects 315

keyestudio WiKi

(continued from previous page)

GPIO.cleanup() # Release all GPIO

6.4.13 Project 13Electronic Hourglass

1. Description

An hourglass (or sand glass, sand timer, sand clock or egg timer) is a device used to measure the passage of time. It
comprises two glass bulbs connected vertically by a narrow neck that allows a regulated flow of a substance (historically
sand) from the upper bulb to the lower one.

Typically the upper and lower bulbs are symmetric so that the hourglass will measure the same duration regardless of
orientation. The specific duration of time a given hourglass measures is determined by factors including the quantity
and coarseness of the particulate matter, the bulb size, and the neck width.

2. Components

Raspberry Pi*1 RPI GPIO-PCF8591 Shield*1 Tilt Sensor*1

White LED Module*1 F-F DuPont Wires Red LED Module*1

3. Component Knowledge

Ball Tilt Sensor

Tilt sensors (tilt ball switch) allow you to detect orientation or inclination. They are small, inexpensive, low-power and
easy-to-use. If used properly, they will not wear out.

The tilt-switch twig is the equivalent of a button, and is used as a digital input. Inside the tilt switch is a ball that
make contact with the pins when the case is upright. Tilt the case over and the balls don’t touch, thus not making a
connection. When the switch is level it is open, and when tilted, the switch closes.

It can be used for orientation detection, alarm device or others.

316 Chapter 6. Python Tutorial

keyestudio WiKi

Here is the principle of tilt sensor to illustrate how it works:

4. Schematic Diagram

Red LED Module RPI GPIO-PCF8591 Shield Tilt Sensor RPI GPIO-PCF8591 Shield

S SIO27 S SIO18

V 5V V 5V

G G G GND

White LED Module RPI GPIO-PCF8591 Shield

S SIO17

V 5V

G G

6.4. 4. Projects 317

keyestudio WiKi

5. Run Example Code

Input the following commands in the terminal and press“Enter”:

cd /home/pi/pythonCode_A

python 13_ball_Tilt.py

6. Test Results

Led1 will brighten gradually and led2 will gradually darken when the two pins of the tilt sensor tilt; otherwise, when
this sensor is tilt to another side or placed horizontally, led1 will get dim and led2 will get bright.

7. Example Code

import RPi.GPIO as GPIO
from time import sleep

#define led pin
led1Pin = 17
led2Pin = 27
#define Ball Tilt Sensor Pin
tiltPin = 18

GPIO.setmode(GPIO.BCM) #use BCM unmbers
GPIO.setup(led1Pin,GPIO.OUT) #set the ledPin OUTPUT mode
GPIO.setup(led2Pin,GPIO.OUT)
GPIO.output(led1Pin,GPIO.HIGH) # make ledPin output HIGH level
GPIO.output(led2Pin,GPIO.LOW) # make ledPin output LOW level
GPIO.setup(tiltPin,GPIO.IN,GPIO.PUD_UP)
pwm1 = GPIO.PWM(led1Pin,1000) #create a pwm1 instance
pwm1.start(0) #start pwm1
pwm2 = GPIO.PWM(led2Pin,1000) #create a pwm2 instance
pwm2.start(0) #start pwm2
val1 = 50
val2 = 50

(continues on next page)

318 Chapter 6. Python Tutorial

keyestudio WiKi

(continued from previous page)

while True:
if not GPIO.input(tiltPin):

val1 = val1 + 1
val2 = val2 - 1
if (val1 >= 100): #Limit PWM value to no more than 100

val1 = 100
if (val2 < 0): #Limit PWM value not less than 0

val2 = 0
print("led1 = %1.0f" %(val1))
pwm1.ChangeDutyCycle(val1) #change the frequency
pwm2.ChangeDutyCycle(val2)
sleep(0.1)

else:
val1 = val1 - 1
val2 = val2 + 1
if (val1 < 0):

val1 = 0
if (val2 >= 100):

val2 = 100
print("led2 = %1.0f" %(val2))
pwm1.ChangeDutyCycle(val1)
pwm2.ChangeDutyCycle(val2)
sleep(0.1)

pwm1.stop() #stop pwm1

GPIO.cleanup() #release all GPIO

6.4.14 Project 14Collision Alarm

1. Description

We use collision sensors to detect if there is a collision. When the object hits the metal switch of the sensor, the sensor
will output a low level signal. When the metal switch is not touched, it will keep a high level. In this project, the cooling
of the collision sensor will be used to control the buzzer.

2. Components

Raspberry Pi*1 RPI GPIO-
PCF8591 Shield*1

Active Buzzer*1 Collision Sensor*1 F-F DuPont Wires

6.4. 4. Projects 319

keyestudio WiKi

3. Component Knowledge

This is a common collision sensor, which mainly uses a tact switch. When the tact switch is touched by an object and
the sensor signal is low, and the LED will be on; otherwise, the sensor signal is high level, and the LED will be off.

4. Schematic Diagram

Active Buzzer RPI GPIO-PCF8591 Shield Collision Sensor RPI GPIO-PCF8591 Shield

S SIO16 S SIO18

V 5V V 5V

G G G G

5. Run Example Code

Input the following commands in the terminal and press“Enter”:

cd /home/pi/pythonCode_A

python 14_crash_buzzer.py

6. Test Results

When you press the tact switch, the buzzer will emit a sound and the terminal will print low level 0. Otherwise, the
buzzer will make no sounds, the terminal will print high level 1.

Note: Press Ctrl + C on keyboard to exit code running.

320 Chapter 6. Python Tutorial

keyestudio WiKi

7. Example Code

import RPi.GPIO as GPIO
from time import sleep

#active buzzer pin
buzPin = 16
#crash pin
crashPin = 18

GPIO.setmode(GPIO.BCM) # use BCM numbers
GPIO.setup(buzPin,GPIO.OUT) #set buzPin OUTPUT mode
GPIO.setup(crashPin,GPIO.IN,GPIO.PUD_UP) # set crashPin INPUT mode and crashPin to PULL␣
→˓UP

while True:
val = GPIO.input(crashPin)
print(val)
if(val == 0): #Judge whether the metal shrapnel is pressed

GPIO.output(buzPin,GPIO.HIGH) #Buzzer ring
else:

GPIO.output(buzPin,GPIO.LOW) #buzzer off

GPIO.cleanup() # Release all GPIO

6.4.15 Project 15Line Tracking Sensor

1. Description

The smart car we launch can follow black lines to move. The key component is a line tracking sensor. In this lesson,
we will learn it.

2. Components

Raspberry Pi*1 RPI GPIO-
PCF8591 Shield*1

Red LED Mod-
ule*1

Line Tracking Sen-
sor*1

F-F DuPont Wires

6.4. 4. Projects 321

keyestudio WiKi

3. Component Knowledge

Line Tracking Sensor

Line tracking sensor is an infrared sensor that can detect black and white objects. Its working principle is that the
strength of the reflected signal is converted into a current signal.

It will be high level when detecting the black object; however, it will be low level when detecting the white object.
Additionally its detection height is 0 ~ 3cm. In the circuit you can use the knob potentiometer to adjust the sensitivity

4. Schematic Diagram

Red LED Module RPI GPIO-PCF8591 Shield Line Tracking Sensor RPI GPIO-PCF8591 Shield

S SIO27 S SIO18

V 5V V 5V

G G G G

322 Chapter 6. Python Tutorial

keyestudio WiKi

5. Run Example Code

Input the following commands in the terminal and press“Enter”:

cd /home/pi/pythonCode_A

python 15_tracking.py

6. Test Results

When it detects a black line(or no object is detected), LED will be off and high level 1 will be output; otherwise, LED
will be on and low level 0 will be output.

Note: Press Ctrl + C on keyboard to exit code running.

7. Example Code

import RPi.GPIO as GPIO
from time import sleep

#led pin
ledPin = 27
#trackin
trackingPin = 18

GPIO.setmode(GPIO.BCM) # use BCM numbers
GPIO.setup(ledPin,GPIO.OUT) #set ledPin OUTPUT mode
GPIO.setup(trackingPin,GPIO.IN) # set trackingPin INPUT mode

while True:
val = GPIO.input(trackingPin)
print(val);
if(val == 0): #Judge whether the white line is detected

GPIO.output(ledPin,GPIO.HIGH) #led on
else:

GPIO.output(ledPin,GPIO.LOW) #led off

GPIO.cleanup() # Release all GPIO

6.4.16 Project 16Photo Interrupter Module

1. Description

In our daily life, we often need to count and take measurements. But how? The combination of light interrupter module
and Raspberry Pi can do the trick. In the project, we will count with the photo interrupter module.

6.4. 4. Projects 323

keyestudio WiKi

2. Components

Raspberry Pi*1 RPI GPIO-PCF8591
Shield*1

Photo Interrupter Mod-
ule*1

F-F DuPont Wires

3. Component Knowledge

Photo Interrupter Module

It is a module which is equipped with a light emitting elements and light receiving elements aligned facing each other
in a single package. It is based on the principle that the light passing through the U-shaped area will encounter block-
age. Therefore, it is widely used in speed measurements, positioning count, small household appliances, optical limit
switches, target detection and other fields.

If an object constantly passes through the U-shaped area of the photo interrupter module, the signal it outputs will
shows constant changes between high and low levels. Therefore, we can count and measure speed by calculating the
amount of high level and low level occurring.

4. Schematic Diagram

Light Interrupter RPI GPIO-PCF8591 Shield
S SIO18
V 5V
G G

324 Chapter 6. Python Tutorial

keyestudio WiKi

5. Run Example Code

Input the following commands in the terminal and press “Enter”:

cd /home/pi/pythonCode_A

python 16_count_photofracture.py

6. Test Results

When the object pass through the U type groove on the light interrupter, the terminal will print numbers.

Note: Press Ctrl + C on keyboard to exit code running.

7. Example Code

import RPi.GPIO as GPIO
from time import sleep

photofracture = 18 #set photofracturePin
val = 0 #photofracture variables
count = 0 #Record the number of photofracture
flag = 0 #Odd even variable
GPIO.setmode(GPIO.BCM) # use BCM numbers

GPIO.setup(photofracture,GPIO.IN) #set the photofracturePin INPUT mode

while True:
val = GPIO.input(photofracture) #Receive photofracture value
#print("photofracture = %d"%(val))
if(val == 0): #if light is broken

sleep(0.01)
val = GPIO.input(photofracture) #Receive photofracture value
if(val == 1): #light is not broken

count = count + 1 #Count the number of light is broken
print("count = %d" %count)

flag = count % 2 #Remainder 2 ,Even is 0, odd is 1

GPIO.cleanup() #release all GPIO

6.4.17 Project 17Magnetic Detection

1. Description

In this chapter, you can use the Hall sensor featuring high sensitivity, fast response, sound temperature performance
and high reliability.

In this project, you will learn how to use a Hall magnetic sensor to control on and off of external LEDs.

6.4. 4. Projects 325

keyestudio WiKi

2. Components

Raspberry Pi*1 RPI GPIO-
PCF8591 Shield*1

Red LED Mod-
ule*1

Hall Magnetic Sen-
sor*1

F-F DuPont Wires

3. Component Knowledge

Hall Magnetic Sensor

Its main component is A3144E, which is an electronic magnetic device and an active device. It can use the magnetic
field and the Hall effect to achieve non-contact control.

Since it is a chip, its lifespan is infinite theoretically. The sensor can be used to detect magnetic fields and output digital
signals.

It can sense magnetic materials within a detection range of around 3 cm. Note that it can only detect whether there is
a magnetic field nearby rather than the strength of the magnetic field.

4. Schematic Diagram

Red LED Module RPI GPIO-PCF8591 Shield Hall Magnetic Sensor RPI GPIO-PCF8591 Shield

S SIO5 S SIO18

V 5V V 5V

G G G G

326 Chapter 6. Python Tutorial

keyestudio WiKi

5. Run Example Code

Input the following commands in the terminal and press“Enter”:

cd /home/pi/pythonCode_A

python 17_Hall_magnetic.py

6. Test Results

When the magnetic bead is placed near the hall magnetic sensor and detected by the hall sensor, the LED will be on,
the terminal will print”magnetic”; on the contrary, the LED will be off and the terminal will “nonmagnetic”.

Note: Press Ctrl + C on keyboard to exit code running

7. Example Code

import RPi.GPIO as GPIO
import time

GPIO.setmode(GPIO.BCM)

ledPin = 5 #set led pin
hallPin = 18 #set hall magnetic pin
GPIO.setup(ledPin,GPIO.OUT)
GPIO.setup(hallPin,GPIO.IN)

while True: ##loop
if GPIO.input(hallPin): #When Magnetic is not detected

GPIO.output(ledPin,GPIO.LOW) #turn off the led
print("nonmagnetic")

else:
GPIO.output(ledPin,GPIO.HIGH) #turn on the led
print("magnetic")

6.4.18 Project 185V Relay

1. Description

From a safety perspective, we specially designed this relay module with NO (normally open) and NC (normally closed)
terminals. In this lesson, we will learn a special and easy-to-use switch, which is the relay module. Use the relay to
start the motor.

In daily life, the electronic device is driven by 220V AC and controlled by switch. People will be in danger once the
electricity leakage happens, connecting switch to 220V AC directly.

Therefore, we design a relay module with NO and NC ends. Let’s get started.

6.4. 4. Projects 327

keyestudio WiKi

2. Components

Raspberry Pi*1 RPI GPIO-PCF8591
Shield*1

5V Relay Module*1 F-F DuPont Wires

3. Component Knowledge

Relay: It is an “automatic switch” that uses a small current to control the operation of a large current.

Control input voltage: 5V

Rated load: 5A 250VAC (NO/NC) 5A 24VDC (NO/NC)

4. Schematic Diagram

Relay Module RPI GPIO-PCF8591 Shield
S SIO18
V 5V
G G

328 Chapter 6. Python Tutorial

keyestudio WiKi

5. Run Example Code

Input the following commands in the terminal and press“Enter”:

cd /home/pi/pythonCode_A

python 18_relay.py

6. Test Results

The light of the relay module will flash.

Note: Press Ctrl + C on keyboard to exit code running.

7. Example Code

import RPi.GPIO as GPIO
from time import sleep

relayPin = 18 #define relay pin

GPIO.setmode(GPIO.BCM)
GPIO.setwarnings(False)
GPIO.setup(relayPin,GPIO.OUT)

while True:
GPIO.output(relayPin,GPIO.HIGH) #Starting relay
print("turn on")
sleep(2)
GPIO.output(relayPin,GPIO.LOW) #Close relay
print("turn off")
sleep(1)

GPIO.cleanup()

6.4.19 Project 19: Touch capacitive Alarm

1. Description

Touch-sensitive alarm is very commonplace in daily life, especially found in home anti-theft and car anti-theft systems.
When someone touches the alarming mental material, the device alarms to warn people. And it is of high sensitivity
and high reliability evidenced by issuing alarm the moment it is touched.

6.4. 4. Projects 329

keyestudio WiKi

2. Components

Raspberry Pi*1 RPI GPIO-
PCF8591 Shield*1

Active Buzzer*1 Capacitive Touch
Sensor*1

F-F DuPont Wires

3. Component Knowledge

Capacitive Touch Sensor

It mainly uses touch detection IC and can be found in many electronic devices. It uses the most popular capacitive
sensing technology, just like the smart buttons on your phone. The touching area of this small sensor can feel the touch
of humans and metals by responding with high or low level. It can still detect the touch though covered by a piece
of paper and cloth. The sensitivity reduces with the increase of items between the touch-sensitive area and the object
performing the touch.

The touch detection IC is designed to replace the traditional button with a variable area key, featuring low power
consumption and wide operating voltage.

When the module is powered up, it needs a stabilization time of about 0.5 sec. During this time period, do not touch
the keypad. At this time, all functions are disabled, and self-calibration is always performed. No touching the key, the
recalibration period is about 4.0sec.

Capacitive touch sensors are used in many devices such as digital audio players, computer displays, mobile phones,
mobile devices, tablets and others.

4. Schematic Diagram

Active Buzzer RPI GPIO-PCF8591 Shield Capacitive Touch Sensor RPI GPIO-PCF8591 Shield

S SIO27 S SIO18

V 5V V 5V

G G G G

330 Chapter 6. Python Tutorial

keyestudio WiKi

5. Run Example Code

Input the following commands in the terminal and press“Enter”:

cd /home/pi/pythonCode_A

python 19_touch_alarm.py

6. Test Results

When we touch the touch area of the capacitive touch sensor, the terminal will print the digital signal 1 and buzzer will
emit sounds; otherwise, the buzzer won’t make sounds, the digital signal 0 will be output.

Note: Press Ctrl + C on keyboard to exit code running.

7. Example Code

import RPi.GPIO as GPIO
from time import sleep

#active buzzer
buzPin = 27
#touch pin
touchPin = 18

GPIO.setmode(GPIO.BCM) # use BCM numbers
GPIO.setup(buzPin,GPIO.OUT) #set buzPin OUTPUT mode
GPIO.setup(touchPin,GPIO.IN) # set touchPin INPUT mode

while True:
val = GPIO.input(touchPin)
print(val)
if(val == 1): #Judge whether the touch area is touched

GPIO.output(buzPin,GPIO.HIGH) #Buzzer ring
else:

(continues on next page)

6.4. 4. Projects 331

keyestudio WiKi

(continued from previous page)

GPIO.output(buzPin,GPIO.LOW) #Buzzer off

GPIO.cleanup() # Release all GPIO

6.4.20 Project 20Obstacle Avoidance Sensor

1. Description

In this chapter, we will introduce the obstacle avoidance.

2. Components

Raspberry Pi*1 RPI GPIO-PCF8591 Shield*1 Active Buzzer*1

IR Obstacle Avoidance Sensor*1 F-F DuPont Wires Red LED Module*1

3. Component Knowledge

IR Obstacle Avoidance Sensor

It has a pair of infrared emissions and receiving tubes. When encountering an obstacle (reflective surface), the infrared
light will be reflected back, and the signal terminal will output low level(0). Flat (0). If no obstacle is detected, the
emitted infrared rays will weaken as the distance value increases, eventually disappear, the receiving tube cannot receive
the infrared ray, and the sensor signal terminal will output high level (1). In this case, this sensor can determine whether
there is an obstacle in front. You can rotate the potentiometer knob on the sensor to adjust the detection distance. The
effective distance 2-40cm, working voltage is 3.3V-5V.

332 Chapter 6. Python Tutorial

keyestudio WiKi

4. Schematic Diagram

Active Buzzer RPI GPIO-PCF8591
Shield

IR Obstacle Avoidance Sen-
sor

RPI GPIO-PCF8591
Shield

S SIO27 S SIO18

V 5V V 5V

G G G G

Red LED Mod-
ule

RPI GPIO-PCF8591
Shield

S SIO5

V 5V

G G

6.4. 4. Projects 333

keyestudio WiKi

5. Run Example Code

Input the following commands in the terminal and press“Enter”

cd /home/pi/pythonCode_A

python20_obstacle_avoidance.py

334 Chapter 6. Python Tutorial

keyestudio WiKi

6. Test Results

When the obstacle avoidance sensor detects an obstacle, the terminal will print the digital signal 0, and the buzzer will
emit sound, and the LED will blink; otherwise, the terminal will print the digital signal 1, LED will be off and no sound
will be emitted.

Note: Press Ctrl + C on keyboard to exit code running.

7. Example Code

import RPi.GPIO as GPIO
from time import sleep

#active buzzer pin
buzPin = 27
#led pin
ledPin = 5
#obstacle avoidance pin
obstaclePin = 18

GPIO.setmode(GPIO.BCM) # use BCM numbers
GPIO.setup(buzPin,GPIO.OUT) #set buzPin OUTPUT mode
GPIO.setup(ledPin,GPIO.OUT) #set ledPin OUTPUT mode
GPIO.setup(obstaclePin,GPIO.IN) # set obstacle avoidance Pin INPUT mode

while True:
val = GPIO.input(obstaclePin)
print(val)
if(val == 0): #Judge whether obstacle avoidance is detected

GPIO.output(buzPin,GPIO.HIGH) #Buzzer ring
GPIO.output(ledPin,GPIO.HIGH) #led on
sleep(0.2)
GPIO.output(ledPin,GPIO.LOW) #led off
sleep(0.1)

else:
GPIO.output(buzPin,GPIO.LOW) #Buzzer off
GPIO.output(ledPin,GPIO.LOW) #led off

GPIO.cleanup() # Release all GPIO

6.4.21 Project 21Reed Switch Module

1. Description

In this project, you will learn how to use a reed switch module and a Raspberry Pi to detect magnetic fields and control
an LED.

6.4. 4. Projects 335

keyestudio WiKi

2. Components

Raspberry Pi*1 RPI GPIO-
PCF8591 Shield*1

Red LED Mod-
ule*1

Reed Switch Mod-
ule*1

F-F DuPont Wires

3. Component Knowledge

Reed Switch Module:

Reed Switch is a special switch and a main component for reed relay and proximity switch. Reed switch is usually
comprised of two soft magnetic materials and metal reed contact.

Reed switch has been widely applied in household appliances, cars, communication, industry, healthcare and security
areas. Furthermore, it can also be applied to other sensors and electric devices such as liquidometer, door magnet, reed
relay, oil level sensor and proximity sensor (magnetic sensor). It can be used under high-risk environment.

4. Schematic Diagram

Red LED Module RPI GPIO-PCF8591 Shield Reed Switch Module RPI GPIO-PCF8591 Shield

S SIO5 S SIO18

V 5V V 5V

G G G G

336 Chapter 6. Python Tutorial

keyestudio WiKi

5. Run Example Code

Input the following commands in the terminal and press“Enter”:

cd /home/pi/pythonCode_A

python 21_reed_switch.py

6. Test Results

When the reed sensor detects that the magnetic field, the terminal will print the digital signal 0, while the LED will be
on; On the contrary, the digital signal 1 will be output, and the LED will be off.

Note: Press Ctrl + C on keyboard to exit code running.

7. Example Code

import RPi.GPIO as GPIO
from time import sleep

#led pin
ledPin = 5
#reed switch pin
reedPin = 18

GPIO.setmode(GPIO.BCM) # use BCM numbers
GPIO.setup(ledPin,GPIO.OUT) #set ledPin OUTPUT mode
GPIO.setup(reedPin,GPIO.IN) # set reed switch Pin INPUT mode

while True:
val = GPIO.input(reedPin)
print(val)
if(val == 0): #Judge whether magnetism is detected

GPIO.output(ledPin,GPIO.HIGH) #led on
else:

GPIO.output(ledPin,GPIO.LOW) #led off

GPIO.cleanup() # Release all GPIO

6.4.22 Project 22Vibration Sensor

1. Description

We often encounter vibration alarms. In this project, let’s learn to use a vibration sensor and buzzer to make a simple
vibration alarm.

6.4. 4. Projects 337

keyestudio WiKi

2. Components

Raspberry Pi*1 RPI GPIO-PCF8591
Shield*1

Active Buzzer*1 Vibration
Sensor*1

F-F Dupont Wires

3. Component Knowledge

Vibration Sensor

This is a commonly used vibration module/sensor. It has non-directional operation characteristics, which means it can
be triggered to work by forces from any angles. The fully sealed package makes it waterproof and dustproof. And it is
suitable for triggering in small current circuits.

After powering up the sensor, when it is not triggered by any forces, the circuit is openOFF, the signal end outputs high
level and the LED on it remains off; when it is activated by an external force to reach its vibration threshold, the circuit
is closeON, the signal end outputs low level and the LED on it lights up; and when the force exerted dies out, the circuit
returns to open (OFF)state. The sensitivity of the sensor can be altered by rotating the potentiometer on it.

4. Schematic Diagram

Active Buzzer RPI GPIO-PCF8591 Shield Vibration Sensor RPI GPIO-PCF8591 Shield

S SIO5 S SIO18

V 5V V 5V

G G G G

338 Chapter 6. Python Tutorial

keyestudio WiKi

5. Run Example Code

Input the following commands in the terminal and press“Enter”:

cd /home/pi/pythonCode_A

python 22_Vibrating_alarm.py

6. Test Results

After running the program, when the vibration sensor is triggered, the terminal keeps printing “buzzer ring. buzzer
off”and the buzzer rings constantly; otherwise, the terminal prints “. . . buzzer off”and the buzzer becomes silent.

Note: Press Ctrl + C on keyboard to exit code running.

7. Example Code

import RPi.GPIO as GPIO

buzPin = 5 # pin5 --- buzeer
vibPin = 18 # pin18 --- vibration sensor

buz_status = 0
def setup():

GPIO.setmode(GPIO.BCM) # use BCM numbers
GPIO.setwarnings(False)
GPIO.setup(buzPin,GPIO.OUT) # Set buzPin's mode is output
GPIO.setup(vibPin,GPIO.IN,pull_up_down=GPIO.PUD_UP) # Set vibPin's mode is input,

→˓ and pull up to high level(3.3V)

def swbuz(ev=None):
global buz_status
buz_status = not buz_status
GPIO.output(buzPin, buz_status) # switch buz status(ring-->off; off-->ring)
if buz_status == 1:

print 'buzzer ring...'
else:

print '...buzzer off'

(continues on next page)

6.4. 4. Projects 339

keyestudio WiKi

(continued from previous page)

def loop():
GPIO.add_event_detect(vibPin, GPIO.FALLING, callback=swbuz) # wait for falling
while True:

pass # Don't do anything

def destroy():
GPIO.output(buzPin, GPIO.LOW) # buzzer off
GPIO.cleanup() # Release resource

if __name__ == '__main__': # Program start from here
setup()
try:

loop()
except KeyboardInterrupt:

destroy()

6.4.23 Project 23Servo

1. Description

Servo is applied widely, especially for robot like human robots and moving robots. In this lesson, we will learn how it
works.

2. Components

Raspberry Pi*1 RPI GPIO-PCF8591 Shield*1 Servo*1

340 Chapter 6. Python Tutorial

keyestudio WiKi

3. Component Knowledge

Servo:

A location(angle) driver which can rotate a certain angle with high accuracy. It has three external wires which are
brown, red and orange,. Brown one is grounded, red one is positive pole of power and orange one is signal wire.

The rotation angle of servo motor is controlled by regulating the duty cycle of PWM (Pulse-Width Modulation) signal.
The standard cycle of PWM signal is 20ms (50Hz). Theoretically, the width is distributed between 1ms-2ms, but in
fact, it’s between 0.5ms-2.5ms. The width corresponds the rotation angle from 0° to 180°. But note that for different
brand motor, the same signal may have different rotation angle.

4. Schematic Diagram

Servo RPI GPIO-PCF8591 Shield
Orange Wire SIO18
Red Wire 5V
Brown Wire G

6.4. 4. Projects 341

keyestudio WiKi

5. Run Example Code

Input the following commands in the terminal and press“Enter”:

cd /home/pi/pythonCode_A

python 23_servo.py

6. Test Results

Enter the angle value and servo rotates the corresponding value, as shown below:

Note: Press Ctrl + C on keyboard to exit code running.

7. Example Code

import RPi.GPIO as GPIO
import time

servo_min_angle = 2.5 #define pulse duty cycle for minimun angle of servo
servo_max_angle = 12.5 #define pulse duty cycle for maximun angle of servo

servopin = 18 #servo Pin
GPIO.setmode(GPIO.BCM) #BCM numbers

GPIO.setup(servopin,GPIO.OUT)
p = GPIO.PWM(servopin,50) #set 50Hz , The working frequency of the steering gear is 50Hz
p.start(0) # start PWM
time.sleep(2)

#define function, map a value from one range to another range
def map(angle, val1, val2, min_angle, max_angle):

return (max_angle-min_angle)*(angle-val1)/(val2-val1)+min_angle

(continues on next page)

342 Chapter 6. Python Tutorial

keyestudio WiKi

(continued from previous page)

while(True): #loop
p.ChangeDutyCycle(0) #set
time.sleep(0.4)
b = input("input Angle:")
b = int(b)
c = map(b, 0, 180, servo_min_angle, servo_max_angle) #map angle from 0~180 to 2.5~

→˓12.5
p.ChangeDutyCycle(c)
time.sleep(0.4)

p.stop()
GPIO.cleanup()

6.4.24 Project 24Adjust the Brightness of LED

1. Description

Some of the lamps on market can be adjusted to display different brightness, which gives us better shopping experiences.
And in this project, we will learn how to make this happen.

2. Components

Raspberry Pi*1 RPI GPIO-
PCF8591 Shield*1

Red LED Mod-
ule*1

Potentiometer*1 F-F DuPont Wires

3. Component Knowledge

PCF8591 A/D Conversion Chip

PCF8591 A/D conversion chip is installed at the back of the RPI GPIO-PCF8591 shieldand its chip’s voltage resolution
is 5V/2550.01961. However, Raspberry Pi doesn’t AD/DA function.

The external shield with AD/DA function is needed if Raspberry Pi is interfaced with analog sensors.

We use a pcf8591 AD/DA converter which requires iic communication.

Then we need to open iic communication of Raspberry Pi, as shown below:

Input sudo raspi-config in the terminal and press Enter to open the interface of Raspberry Pi.

Press key ↑, ↓, ← and → and then press Enter

6.4. 4. Projects 343

keyestudio WiKi

344 Chapter 6. Python Tutorial

keyestudio WiKi

More information about I2C communication, check it in the link: https://www.nxp.com/docs/en/user-guide/UM10204.
pdf

PCF8591 Pins:

More details about PCF8591 chip, you could look through chip specification folder .

From the below figure, PCF8591 has an analog output pin Aout and four analog input pin A0-A3.

Check the address of iic modulePCF8591of Raspberry Pi, enter command i2cdetect -y 1 and press Enter.

The iic address of PCF8591 is 0x48.

6.4. 4. Projects 345

https://www.nxp.com/docs/en/user-guide/UM10204.pdf
https://www.nxp.com/docs/en/user-guide/UM10204.pdf

keyestudio WiKi

Used to read the address of pin A0~A3.

The address of analog output pin AOUT: 0x40, that is, 64 converting from hexadecimal to decimal.

A0 = 0x40 ##A0 —-> port address

A1 = 0x41

A2 = 0x42

A3 = 0x43

Adjustable Potentiometer

The rotary potentiometer means the change of resistance.

We could convert the resistance’s change into the voltage’s when setting circuit. Then, voltage changes will be output
to GPIO port through module signals.

Wiring according to the below figure and rotate clockwise, resistance value reduces.

4. Schematic Diagram

Red LED Mod-
ule

RPI GPIO-PCF8591
Shield

Adjustable Potentiome-
ter

RPI GPIO-PCF8591
Shield

S SIO11 S SA0

V 5V V 5V

G G G G

346 Chapter 6. Python Tutorial

keyestudio WiKi

5. Run Example Code

Input the following commands in the terminal and press“Enter”:

cd /home/pi/pythonCode_A

python 24_potentiometer_LED.py

6. Test Results

Terminal prints the analog value read by adjustable potentiometer. The LED brightness will vary with the the rotary
of potentiometer.

Note: Press Ctrl + C on keyboard to exit code running.

7. Example Code

import RPi.GPIO as GPIO
import smbus
import time
address = 0x48 #default address of PCF8591
bus=smbus.SMBus(1) #Create an instance of smbus
cmd=0x40 #command
A0 = 0x40 ##A0 ----> port address
A1 = 0x41
A2 = 0x42
A3 = 0x43

ledPin = 11
GPIO.setmode(GPIO.BCM)
GPIO.setup(ledPin,GPIO.OUT)
GPIO.output(ledPin,GPIO.LOW)
p = GPIO.PWM(ledPin,100)
p.start(0)

def analogRead(chn): #read ADC value,chn:0,1,2,3
(continues on next page)

6.4. 4. Projects 347

keyestudio WiKi

(continued from previous page)

value = bus.read_byte_data(address,cmd+chn)
return value

def analogWrite(value):#write DAC value
bus.write_byte_data(address,cmd,value)

def loop():
while True:

value = analogRead(0) #read the ADC value ofchannel 0
analogWrite(value) #write the DAC value
p.ChangeDutyCycle(value*100/255) #Convert ADC value to duty cycle of PWM
voltage = value / 255.0 * 3.3 #calculate the voltage value
print ('ADC Value : %d, Voltage : %.2f'%(value,voltage))
time.sleep(0.01)

def destroy():
bus.close()

if __name__ == '__main__':
print ('Program is starting ... ')
try:

loop()
except KeyboardInterrupt:

destroy()

8. Explanation

smbus Smbus is based on iic communication. We treat it as iic communication library.
bus.read_byte_data(address,cmd+chn)Read the corresponding modules with iic addressaddress is the address of pcf8591 mod-

ulecmd+chn correspond to the address of analog port pcf8591: A0 = 0x40A1 = 0x41A2
= 0x42A3 = 0x43

bus.write_byte_data(address,cmd,value)D/A analog value outputs, address is address of pcf8591 modulecmd outputs the address of
pinsvalue: output value

Smbus library file https://pypi.org/project/smbus2/0.1.2/

348 Chapter 6. Python Tutorial

https://pypi.org/project/smbus2/0.1.2/

keyestudio WiKi

6.4.25 Project 25Photoresistor

1. Description

Photo resistor (Photovaristor) is a resistor whose resistance varies according to different incident light strength. It’s
made based on the photoelectric effect of semiconductor. In this lesson, let’s explain how it works.

2. Components

Raspberry Pi*1 RPI GPIO-PCF8591
Shield*1

Red LED Module*1 Photoresistor*1 F-F DuPont Wires

3. Component Knowledge

Photoresistor

Photo resistor (Photovaristor) is a resistor whose resistance varies according to different incident light strength. It’s
made based on the photoelectric effect of semiconductor. If the incident light is intense, its resistance reduces; if the
incident light is weak, the resistance increases.

If incident light on a photoresistor exceeds a certain frequency, photons absorbed by the semiconductor give bound
electrons enough energy to jump into the conduction band. The resulting free electrons (and their hole partners) conduct
electricity, thereby lowering resistance.

4. Schematic Diagram

Red LED Module RPI GPIO-PCF8591 Shield Photoresistor RPI GPIO-PCF8591 Shield

S SIO5 S SA0

V 5V V 5V

G G G G

6.4. 4. Projects 349

keyestudio WiKi

5. Run Example Code

Special Note: The I2C communication method is used in the experiment. We need to check the iic address first(enter
commandi2cdetect -y 1 and press“Enter”). If failed, check the wiring is correct or not. If correct, you need to enable
I2C communication function of Raspberry Pi, project 24 is for your reference.

After enabling the I2C communicationinput the following commands and press “Enter”:

cd /home/pi/pythonCode_A

python 25_photo_sensor.py

6. Test Results

Terminal prints the value tested by photoresistor. LED will turn on if the ambient environment is dim; otherwise, LED
will be off.

Note: Press Ctrl + C on keyboard to exit code running.

7. Example Code

import RPi.GPIO as GPIO
import smbus
import time

GPIO.setmode(GPIO.BCM)
GPIO.setwarnings(False)

led = 5
GPIO.setup(led,GPIO.OUT)

address = 0x48 ##address ---> device address
cmd = 0x40 ##DA converter command
A0 = 0x40 ##A0 ----> port address
A1 = 0x41
A2 = 0x42

(continues on next page)

350 Chapter 6. Python Tutorial

keyestudio WiKi

(continued from previous page)

A3 = 0x43
bus = smbus.SMBus(1) ##start the bus

def analogRead(count): #function,read analog data
read_val = bus.read_byte_data(address,cmd+count)
return read_val

while True: ##loop
#Vout = 10 ##10*0.0196=0.196V
#bus.write_byte_data(address,cmd,Vout) ##DA converter
value = analogRead(0) ##read A0 data
if(value<100): #When the ambient brightness is less than 100,

→˓ the LED light will be on
GPIO.output(led,GPIO.LOW)

else:
GPIO.output(led,GPIO.HIGH)

print("data:%1.0f" %(value)) ##print data

time.sleep(0.5) ##delay 0.5 second
GPIO.cleanup()

6.4.26 Project 26Sound-activated Light

1. Description

You might find the lights automatically on when you pass them, nevertheless, they will be off if the surrounding is
quiet. Do you know why?

Actually, it is sound sensor that controls them on and off.

2. Components:

Raspberry Pi*1 RPI GPIO-
PCF8591 Shield*1

Red LED Mod-
ule*1

Analog Sound Sen-
sor*1

F-F DuPont Wires

6.4. 4. Projects 351

keyestudio WiKi

3. Component

A sound sensor is defined as a module that detects sound waves through its intensity and converting it to electrical
signals.

It has a built-in capacitive electret microphone which is highly sensitive to sound. Sound waves cause the thin film
of the electret to vibrate and then the capacitance changes, thus producing the corresponding changed voltage. Since
the voltage change is extremely weak, it needs to be amplified. So it is converted into a voltage ranging from 0 to 5V,
which is received by data acquisition unit after A/D adapter conversion and then sent to an MCU.

The module can be applied to noise monitoring in traffic artery, and detection of noises within the boundary of industrial
enterprises, factories, and construction sites, detection of noises in urban regions, and noise detection and assessment
of living surroundings.

4. Schematic Diagram

Red LED Module RPI GPIO-PCF8591 Shield Analog Sound Sensor RPI GPIO-PCF8591 Shield

S SIO5 S SA0

V 5V V 5V

G G G G

5. Run Example Code

Special Note: The I2C communication method is used in the experiment. We need to check the iic address first(enter
commandi2cdetect -y 1 and press“Enter”). If failed, check the wiring is correct or not. If correct, you need to enable
I2C communication function of Raspberry Pi, project 24 is for your reference.

After enabling the I2C communicationinput the following commands and press “Enter”:

cd /home/pi/pythonCode_A

python 26_sound_led.py

352 Chapter 6. Python Tutorial

keyestudio WiKi

6. Test Results

When you clap your hands suddenly, LED will be on; if you clap again, LED will be off.

Note: Press Ctrl + C on keyboard to exit code running.

7. Example Code

import RPi.GPIO as GPIO
import smbus
import time

GPIO.setmode(GPIO.BCM)
GPIO.setwarnings(False)

led = 5
GPIO.setup(led,GPIO.OUT)

address = 0x48 ##address ---> device address
cmd = 0x40 ##DA converter command
A0 = 0x40 ##A0 ----> port address
A1 = 0x41
A2 = 0x42
A3 = 0x43
bus = smbus.SMBus(1) ##start the bus

flag = 0
mode = 0

def analogRead(count): #function,read analog data
read_val = bus.read_byte_data(address,cmd+count)
return read_val

while True: ##loop
value = analogRead(0) ##read A0 data
if(value>50):

flag += 1
mode = flag % 2

if(mode == 0):
GPIO.output(led,GPIO.LOW)

else:
GPIO.output(led,GPIO.HIGH)

print("data:%1.0f" %(value)) ##print data
time.sleep(0.05) ##delay 0.05 second

GPIO.cleanup()

6.4. 4. Projects 353

keyestudio WiKi

6.4.27 Project 27LCD1602

1. Description

In this chapter, we will use a 1602 I2C module as a display and connect it to the Raspberry Pi. And we will show you
how to control a 1602 LCD module.

2. Components

Raspberry Pi*1 RPI GPIO-PCF8591
Shield*1

I2C LCD1602 Module*1 F-F DuPont Wires

3. Component Knowledge

LCD1602 Display Module

The display has an LCD 1602 LCD display and I2C LCD. But we use an I2C LCD 1602 in this project. It can display
characters of 16 column and 2 row. It also can display numbers, letters, symbols, ASCII codes, etc. As shown below:

The I2C LCD1602 display integrates an I2C interface, a connected serial input & parallel output. This makes us operate
the LCD1602 with only 4 lines.

The IC chip used in this module is PCF8574T (PCF8574AT) whose default I2C address is 0x27 (0x3f). You can also
view the RPI bus on your I2C device address by command “I2CDetect -y 1”.

354 Chapter 6. Python Tutorial

keyestudio WiKi

4. Schematic Diagram

I2C LCD1602 Module RPI GPIO-PCF8591 Shield
GND GND
VCC 5V
SDA IO2
SCL IO3

6.4. 4. Projects 355

keyestudio WiKi

5. Run Example Code

Special Note: The I2C communication method is used in the experiment. We need to check the iic address first(enter
commandi2cdetect -y 1 and press“Enter”). If failed, check the wiring is correct or not. If correct, you need to enable
I2C communication function of Raspberry Pi, project 24 is for your reference.

After enabling the I2C communicationinput the following commands and press “Enter”:

cd /home/pi/pythonCode_A/27_I2CLCD1602

python 27_I2CLCD1602.py

6. Test Results

The LCD1602 screen will display the CPU temperature and system time of your Raspberry Pi.

Note: after uploading code, if you can’t see anything on the display or display is unclear, try to rotate the blue knob on
the back of the LCD1602, adjust the contrast until the screen can clear the time and temperature.

Note: Press Ctrl + C on keyboard to exit code running.

7. Example Code

from PCF8574 import PCF8574_GPIO
from Adafruit_LCD1602 import Adafruit_CharLCD

from time import sleep, strftime
from datetime import datetime

def get_cpu_temp(): # get CPU temperature and store it into file "/sys/class/thermal/
→˓thermal_zone0/temp"

tmp = open('/sys/class/thermal/thermal_zone0/temp')
cpu = tmp.read()
tmp.close()
return '{:.2f}'.format(float(cpu)/1000) + ' C'

def get_time_now(): # get system time
return datetime.now().strftime(' %H:%M:%S')

def loop():
mcp.output(3,1) # turn on LCD backlight
lcd.begin(16,2) # set number of LCD lines and columns
while(True):

#lcd.clear()
lcd.setCursor(0,0) # set cursor position
lcd.message('CPU: ' + get_cpu_temp()+'\n')# display CPU temperature
lcd.message(get_time_now()) # display the time
sleep(1)

def destroy():
lcd.clear()

PCF8574_address = 0x27 # I2C address of the PCF8574 chip.
PCF8574A_address = 0x3F # I2C address of the PCF8574A chip.

(continues on next page)

356 Chapter 6. Python Tutorial

keyestudio WiKi

(continued from previous page)

Create PCF8574 GPIO adapter.
try:

mcp = PCF8574_GPIO(PCF8574_address)
except:

try:
mcp = PCF8574_GPIO(PCF8574A_address)

except:
print ('I2C Address Error !')
exit(1)

Create LCD, passing in MCP GPIO adapter.
lcd = Adafruit_CharLCD(pin_rs=0, pin_e=2, pins_db=[4,5,6,7], GPIO=mcp)

if __name__ == '__main__':
print ('Program is starting ... ')
try:

loop()
except KeyboardInterrupt:

destroy()

6.4.28 Project 28Water Level Monitor

1. Description

If you have ever had a water heater explode or ever tried to make submersible electronics, then you know how important
it is to detect when water is around. Let’s know more about water level sensor.

2. Components:

Raspberry Pi*1 RPI GPIO-
PCF8591 Shield*1

Active Buzzer*1 Water Level Sen-
sor*1

F-F DuPont Wires

3. Component Knowledge

Water Level Sensor

Our water sensor is easy- to-use, portable and cost-effective, designed to identify and detect water level and water drop.

This sensor measures the volume of water drop and water quantity through an array of traces of exposed parallel wires.

It could convert water content to analog signals, and output analog value could be used by function of application. It
has the features of low consumption as well.

6.4. 4. Projects 357

keyestudio WiKi

4. Schematic Diagram

Active Buzzer RPI GPIO-PCF8591 Shield Water Level Sensor RPI GPIO-PCF8591 Shield

S SIO18 S SA0

V 5V V 5V

G G G G

5. Run Example Code

Special Note: The I2C communication method is used in the experiment. We need to check the iic address first(enter
commandi2cdetect -y 1 and press“Enter”). If failed, check the wiring is correct or not. If correct, you need to enable
I2C communication function of Raspberry Pi, project 24 is for your reference.

After enabling the I2C communicationinput the following commands and press “Enter”:

cd /home/pi/pythonCode_A

python 28_water_buzzer.py

6. Test Results

When water covers the detection part of the sensor, the buzzer will emit sounds.

Note: Press Ctrl + C on keyboard to exit code running.

358 Chapter 6. Python Tutorial

keyestudio WiKi

7. Example Code

import RPi.GPIO as GPIO
import smbus
import time

GPIO.setmode(GPIO.BCM)
GPIO.setwarnings(False)

buz = 18
GPIO.setup(buz,GPIO.OUT)

address = 0x48 ##address ---> device address
cmd = 0x40 ##DA converter command
A0 = 0x40 ##A0 ----> port address
A1 = 0x41
A2 = 0x42
A3 = 0x43
bus = smbus.SMBus(1) ##start the bus

def analogRead(count): #function,read analog data
read_val = bus.read_byte_data(address,cmd+count)
return read_val

while True: ##loop
value = analogRead(0) ##read A0 data
if(value>30):

GPIO.output(buz,GPIO.HIGH)
else:

GPIO.output(buz,GPIO.LOW)

print("data:%1.0f" %(value)) ##print data
time.sleep(0.05) ##delay 0.05 second

GPIO.cleanup()

6.4.29 Project 29Flower-watering Device

1. Description

The household plants are popular in many a communities. They will die if you forget to water them, how about making
an automatic watering device?

6.4. 4. Projects 359

keyestudio WiKi

2. Components

Raspberry Pi*1 RPI GPIO-PCF8591
Shield*1

Soil Humidity
Sensor*1

F-F DuPont Wires

3. Component Knowledge

Soil Humidity Sensor

This is a simple soil humidity sensor aims to detect the soil humidity.

If the soil is in lack of water, the analog value output by the sensor will decrease; otherwise, it will increase. If you
use this sensor to make an automatic watering device, it can detect whether your botany is thirsty to prevent it from
withering when you go out.

Using the sensor with controller makes your plant more comfortable and your garden smarter. The soil humidity sensor
module is not as complicated as you might think, and if you need to detect the soil in your project, it will be your best
choice.

4. Schematic Diagram

Soil Humidity Sensor RPI GPIO-PCF8591 Shield
S SA0
V 5V
G G

360 Chapter 6. Python Tutorial

keyestudio WiKi

5. Run Example Code

Special Note: The I2C communication method is used in the experiment. We need to check the iic address first(enter
commandi2cdetect -y 1 and press“Enter”). If failed, check the wiring is correct or not. If correct, you need to enable
I2C communication function of Raspberry Pi, project 24 is for your reference.

After enabling the I2C communicationinput the following commands and press “Enter”:

cd /home/pi/pythonCode_A

python 29_soil.py

6. Test Results

Insert the soil humidity sensor into the plant pot, then the terminal will print the soil humidity value.

Note: Press Ctrl + C on keyboard to exit code running.

7. Example Code

import RPi.GPIO as GPIO
import smbus
import time

GPIO.setmode(GPIO.BCM)
GPIO.setwarnings(False)

address = 0x48 ##address--->device address
cmd = 0x40 ##DA converter command
A0 = 0x40 ##A0 ----> port address
A1 = 0x41
A2 = 0x42
A3 = 0x43
bus = smbus.SMBus(1) ##start the bus
while True: ##loop

#Vout = 10 ##10*0.0196=0.196V
#bus.write_byte_data(address,cmd,Vout) ##DA converter
bus.write_byte(address,A0) ##which port of the device you want to access
value = bus.read_byte(address) ##access the data
print("data:%1.0f" %(value)) ##print data

time.sleep(0.5) ##delay 0.5 second
GPIO.cleanup()

6.4. 4. Projects 361

keyestudio WiKi

6.4.30 Project 30Temperature Alarm

1. Description

In the cold winter, in order to prevent the greenhouse vegetables from being frozen, the vegetable farmers will heat the
greenhouse vegetables so that the temperature in the greenhouse is suitable.

In this project, we will learn to make a temperature alert model.

2. Components

Raspberry Pi*1 RPI GPIO-
PCF8591 Shield*1

Active Buzzer*1 LM35 Tempera-
ture Sensor*1

F-F DuPont Wires

3. Component Knowledge

LM35 Temperature Sensor

The temperature sensor based on the semiconductor LM35 is a temperature sensor that is proportional to a total pro-
portion of a Celsius temperature, and its output voltage is a temperature standard.

LM35DZ is a widely used temperature sensor. Since it adopts internal compensation, the output can start from 0 ° C.

Sensitivity is 10 mV /℃;

The output temperature range is from 0℃100℃,

Conversion formula: output 0V when temperature is 1℃, the output voltage increases by 10 mV.

Operating voltage: 4-30V;

Accuracy: ± 1℃.

The maximum linear error: ± 0.5℃;

The static current: 80ua.

4. Schematic Diagram

Active
Buzzer

RPI GPIO-PCF8591
Shield

LM35Temperature Sen-
sor

RPI GPIO-PCF8591
Shield

S SIO18 S SA0

V 5V V 5V

G G G G

362 Chapter 6. Python Tutorial

keyestudio WiKi

5. Run Example Code

Special Note: The I2C communication method is used in the experiment. We need to check the iic address first(enter
commandi2cdetect -y 1 and press“Enter”). If failed, check the wiring is correct or not. If correct, you need to enable
I2C communication function of Raspberry Pi, project 24 is for your reference.

After the I2C communication function is enabled, then input the following commands in the terminal and press “Enter”:

cd /home/pi/pythonCode_A

python 30_LM35.py

6. Test Results

After the program is activated, the terminal prints the temperature value. When the temperature value is greater than
20°, the buzzer will emit sounds; on the contrary, the buzzer won’t emit sounds.

Note: Press Ctrl + C on keyboard to exit code running.

7. Example Code

The temperature value 20 in the code can be adjusted according to the local temperature.

import RPi.GPIO as GPIO
import time
import smbus

GPIO.setwarnings(False)
GPIO.setmode(GPIO.BCM) # Use BCM GPIO numbers

buz = 18
GPIO.setup(buz,GPIO.OUT)

address = 0x48 ##address--->device address
cmd = 0x40
A0 = 0x40 ##A0---->port address
A1 = 0x41
A2 = 0x42

(continues on next page)

6.4. 4. Projects 363

keyestudio WiKi

(continued from previous page)

A3 = 0x43
bus = smbus.SMBus(1)

def analogRead(count): #function,read analog data
read_val = bus.read_byte_data(address,cmd+count)
return read_val

while True:
temp = analogRead(0) ##read A0 data
if(temp>20):

GPIO.output(buz,GPIO.HIGH)
else:

GPIO.output(buz,GPIO.LOW)

print("Temp = %s"%(temp)) ##print data
time.sleep(0.1); ##delay 0.5 second

GPIO.cleanup()

6.4.31 Project 31: Steam Sensor

1. Description

Our lives are surrounded by air everywhere. The air contains many ingredients, some of which are useful, some are
harmful, some of which have a significant impact on the human body, and some of which have a slight effect on the
human body.

So in this lesson, you will learn how to use a steam sensor and Raspberry Pi to detect the vapor content in the air.

2. Components

Raspberry Pi*1 RPI GPIO-PCF8591
Shield*1

Steam Sensor*1 F-F DuPont Wires

364 Chapter 6. Python Tutorial

keyestudio WiKi

3. Component Knowledge

Steam Sensor

This is a commonly used steam sensor. Its principle is to detect the amount of water by bare printed parallel lines on
the circuit board. The more the water is, the more wires will be connected. As the conductive contact area increases,
the output voltage will gradually rise. It can detect water vapor in the air as well. The steam sensor can be used as a
rain water detector and level switch. When the humidity on the sensor surface surges, the output voltage will increase.

4. Schematic Diagram

Steam Sensor RPI GPIO-PCF8591 Shield
S SA0
V 5V
G G

5. Run Example Code

Special Note: The I2C communication method is used in the experiment. We need to check the iic address first(enter
commandi2cdetect -y 1 and press“Enter”). If failed, check the wiring is correct or not. If correct, you need to enable
I2C communication function of Raspberry Pi, project 24 is for your reference.

After enabling the I2C communicationinput the following commands and press “Enter”:

cd /home/pi/pythonCode_A

python 31_water_vapor.py

6.4. 4. Projects 365

keyestudio WiKi

6. Test Results

The terminal shows the steam content in the air.

Note: Press Ctrl + C on keyboard to exit code running.

7. Example Code

import RPi.GPIO as GPIO
import time
import smbus

GPIO.setwarnings(False)
GPIO.setmode(GPIO.BCM) # Use BCM GPIO numbers

address = 0x48 ##address--->device address
cmd = 0x40
A0 = 0x40 ##A0---->port address
A1 = 0x41
A2 = 0x42
A3 = 0x43
bus = smbus.SMBus(1)

def analogRead(count): #function,read analog data
read_val = bus.read_byte_data(address,cmd+count)
return read_val

while True:
value = analogRead(0) ##read A0 data
print("water content = %s"%(value)) ##print data
time.sleep(0.1); ##delay 0.5 second

GPIO.cleanup()

6.4.32 Project 32Gas Leakage Alarm

1. Description

Some households have access to gas, which is composed of CO, CO2, N2, H2 and CH4. CO is one of toxic gases.
People will be in danger if absorbing too much CO. However, we could tackle with this problem over a gas leakage
alarm.

Gas MQ-2 leakage alarm detects the presence of a combustible or toxic gas and react by displaying a reading, setting
off an audible or visual alarm.

366 Chapter 6. Python Tutorial

keyestudio WiKi

2. Components

Raspberry Pi*1 RPI GPIO-
PCF8591 Shield*1

Active Buzzer*1 MQ-2 Gas Sen-
sor*1

F-F DuPont Wires

3. Component Knowledge

MQ-2 Gas Sensor

MQ-2 gas sensor adopts the material sensitive to gas——SnO2 with low electricity conductivity. When beset with
combustible gas, its electricity conductivity varies with the of the concentration of flammable gas, however, the simple
circuit could convert the change of electricity conductivity into the output signals of the concentration of gas sensor.

MQ-2 gas sensor is a multi-purpose and cost-effective. It can detect the concentration of flammable gas and smoke in
the range of 300~10000ppm.Meanwhile, it has high sensitivity to natural gas, liquefied petroleum gas and other smoke,
especially to alkanes smoke.

Note

(1) The sensitivity of the alcohol sensor can be adjusted by rotating the potentiometer on it.

Turning the knob clockwise, the threshold value increases while turning it counterclockwise, the threshold value de-
creases.

(2)The sensor may not be able to output stable and accurate data immediately, and it needs to be warmed up for about
1 minute to collect stable data.

4. Schematic Diagram

Active Buzzer RPI GPIO-PCF8591 Shield MQ-2 Gas Sensor RPI GPIO-PCF8591 Shield

S SIO18 S SA0

V 5V V 5V

G G G G

6.4. 4. Projects 367

keyestudio WiKi

5. Run Example Code

Special Note: The I2C communication method is used in the experiment. We need to check the iic address first(enter
commandi2cdetect -y 1 and press“Enter”). If failed, check the wiring is correct or not. If correct, you need to enable
I2C communication function of Raspberry Pi, project 24 is for your reference.

After enabling the I2C communicationinput the following commands and press “Enter”:

cd /home/pi/pythonCode_A

python 32_gas_MQ_2.py

6. Test Results

The terminal will show the gas analog value detected by MQ-2 sensor; when the value is more than 60, the buzzer will
emit sounds.

Note: Press Ctrl + C on keyboard to exit code running.

7. Example Code

import RPi.GPIO as GPIO
import time
import smbus

#pcf8591
address=0x48
cmd=0x40
A0=0x40##A0---->port address
A1=0x41
A2=0x42
A3=0x43
bus=smbus.SMBus(1)

#buzzer
buzPin = 18 #set buzPin to 18
GPIO.setmode(GPIO.BCM) # use BCM numbers

(continues on next page)

368 Chapter 6. Python Tutorial

keyestudio WiKi

(continued from previous page)

GPIO.setwarnings(False)
GPIO.setup(buzPin,GPIO.OUT) #set buzPin OUTPUT mode

def main():
while True:

Value = analogRead(0)
print("MQ-2 = %s"%(value))
time.sleep(0.01)

def analogRead(count):
read_val=bus.read_byte_data(address,cmd+count)
if(read_val > 60):

GPIO.output(buzPin,GPIO.HIGH) #Buzzer ring
else:

GPIO.output(buzPin,GPIO.LOW) #Buzzer stop
mq2_val = str(read_val) # int to string
return mq2_val

if __name__ == '__main__':

try:
main()

except KeyboardInterrupt:
pass

finally:
GPIO.cleanup()

6.4.33 Project 33Alcohol Tester

1. Description

In this project, you will learn how to use an analog alcohol sensor and Raspberry Pi to detect the alcohol content in the
air.

This analog sensor-MQ3 is suitable for detecting the alcohol. It can be used in a breath analyzer. It has a good selectivity
because it has higher sensitivity to alcohol and lower sensitivity to Benzine.

2. Components

Raspberry Pi*1 RPI GPIO-
PCF8591 Shield*1

Active Buzzer*1 MQ-3 Gas Sen-
sor*1

F-F DuPont Wires

6.4. 4. Projects 369

keyestudio WiKi

3. Component Knowledge

MQ-3 Alcohol Sensor

This analog gas sensor - MQ3 adapts a gas-sensitive material called tin dioxide (SnO2) which is of low conductivity
in clean air. Therefore, when there is alcohol vapor detected, its conductivity increases with the increase of the alcohol
vapor concentration and it outputs signals (digital and analog signals). The higher the alcohol concentration it senses,
the greater the analog value the terminal outputs.

Note: the sensitivity of the alcohol sensor can be adjusted by rotating the potentiometer on it.

Please note that the sensor may not be able to output stable and accurate data immediately, and it needs to be warmed
up for about 1 minute to collect stable data.

4. Schematic Diagram

Active Buzzer RPI GPIO-PCF8591 Shield MQ-3 Alcohol Sensor RPI GPIO-PCF8591 Shield

S SIO18 S SA0

V 5V V 5V

G G G G

370 Chapter 6. Python Tutorial

keyestudio WiKi

5. Run Example Code

Special Note: The I2C communication method is used in the experiment. We need to check the iic address first(enter
commandi2cdetect -y 1 and press“Enter”). If failed, check the wiring is correct or not. If correct, you need to enable
I2C communication function of Raspberry Pi, project 24 is for your reference.

After enabling the I2C communicationinput the following commands and press “Enter”:

cd /home/pi/pythonCode_A

python 33_alcohol_MQ_3.py

6. Test Results

After running the program, the terminal displays the analog alcohol value in the air detected by the MQ-3 alcohol
sensor. And when the analog value is bigger that 80, the buzzer make a sound; otherwise, it reminds silent.

Note: Press Ctrl + C on keyboard to exit code running.

7. Example Code

import RPi.GPIO as GPIO
import time
import smbus

#pcf8591
address=0x48
cmd=0x40
A0=0x40##A0---->port address
A1=0x41
A2=0x42
A3=0x43
bus=smbus.SMBus(1)

#buzzer
buzPin = 18 #set buzPin to 18
GPIO.setmode(GPIO.BCM) # use BCM numbers
GPIO.setwarnings(False)
GPIO.setup(buzPin,GPIO.OUT) #set buzPin OUTPUT mode

def main():
while True:

value = analogRead(0)
print("MQ-3 = %s"%(value))
time.sleep(0.01)

def analogRead(count):
read_val=bus.read_byte_data(address,cmd+count)
if(read_val > 80):

GPIO.output(buzPin,GPIO.HIGH) #Buzzer ring
else:

GPIO.output(buzPin,GPIO.LOW) #Buzzer stop
(continues on next page)

6.4. 4. Projects 371

keyestudio WiKi

(continued from previous page)

mq3_val = str(read_val) # int to string
return mq3_val

if __name__ == '__main__':

try:
main()

except KeyboardInterrupt:
pass

finally:
GPIO.cleanup()

6.4.34 Project 34Joystick Module

1. Description

Many a people play games with gamepad. But do you know who it work?

Let’s learn about it.

2. Components

Raspberry Pi*1 RPI GPIO-PCF8591
Shield*1

Joystick Module*1 F-F DuPont Wires

3. Component Knowledge

Joystick Module

This is a joystick very similar to the ‘analog’ joysticks on PS2 (PlayStation 2) controllers. It is a self-centering spring
loaded joystick, meaning when you release the joystick it will center itself. It also contains a comfortable cup-type
knob/cap which gives the feel of a thumb-stick.

It has three signal pins which are connected GND, VCC and signal endB, X, Y). The X pin is X-axis (left to right), the
Y pin is Y-axis (front and back) and signal B end is Z-axis(usually used as digital port and pushbutton).

VCC is connected to V/VCC3.3/5Vof MCU, GND to G/GND of MCU and the voltage is around 1.65V/2.5V in initial
status.

X axis gives readout of the joystick in the horizontal direction (X-coordinate) i.e. how far left and right the joystick is
pushed.

372 Chapter 6. Python Tutorial

keyestudio WiKi

Y axis gives readout of the joystick in the vertical direction (Y-coordinate) i.e. how far up and down the joystick is
pushed.

Z axis is the output from the pushbutton. It’s normally open, meaning the digital readout from the SW pin will be
HIGH. When the button is pushed, it will connect to GND, giving output LOW.

4. Schematic Diagram

Joystick Module RPI GPIO-PCF8591 Shield
Y SA1
X SA0
B S(IO26)
V 5V
G G

5. Run Example Code

Special Note: The I2C communication method is used in the experiment. We need to check the iic address first(enter
commandi2cdetect -y 1 and press“Enter”). If failed, check the wiring is correct or not. If correct, you need to enable
I2C communication function of Raspberry Pi, project 24 is for your reference.

After enabling the I2C communicationinput the following commands and press “Enter”:

cd /home/pi/pythonCode_A

python 34_joystick.py

6.4. 4. Projects 373

keyestudio WiKi

6. Test Results

Move joystick , the terminal will show the responding data change. If you press it,“The key is pressed”is displayed in
the terminal.

Note: Press Ctrl + C on keyboard to exit code running.

7. Example Code

import RPi.GPIO as GPIO
import smbus
import time

GPIO.setmode(GPIO.BCM)
GPIO.setwarnings(False)

key = 26 # joystic button pin
GPIO.setup(key,GPIO.IN)

address = 0x48 ##address ---> device address
cmd = 0x40 ##DA converter command
A0 = 0x40 ##A0 ----> port address
A1 = 0x41
A2 = 0x42
A3 = 0x43
bus = smbus.SMBus(1) ##start the bus

def analogRead(count): #function,read analog data
read_val = bus.read_byte_data(address,cmd+count)
return read_val

while True: ##loop
#Vout = 10 ##10*0.0196=0.196V
#bus.write_byte_data(address,cmd,Vout) ##DA converter
x_val = analogRead(0) ##read A0 data
y_val = analogRead(1) #read A1 data
print("x:%1.0f y:%1.0f" %(x_val,y_val)) ##print data
if GPIO.input(key):

print("The key is pressed")

GPIO.cleanup()

6.4.35 Project 35Ultrasonic Sensor

1. Description

An ultrasonic sensor is an electronic device that measures the distance of a target object by emitting ultrasonic sound
waves, and converts the reflected sound into an electrical signal.

374 Chapter 6. Python Tutorial

keyestudio WiKi

2. Components

Raspberry Pi*1 RPI GPIO-PCF8591
Shield*1

Ultrasonic Sensor*1 F-F DuPont Wires

3. Component Knowledge

Ultrasonic Sensor

The ultrasonic module will emit the ultrasonic waves after trigger signal. When the ultrasonic waves encounter the
object and are reflected back, the module outputs an echo signal, so it can determine the distance of object from the
time difference between trigger signal and echo signal.

The t is the time that emitting signal meets obstacle and returns.

and the propagation speed of sound in the air is about 343m/s, therefore, distance = speed * time, because the ultrasonic
wave emits and comes back, which is 2 times of distance, so it needs to be divided by 2, the distance measured by
ultrasonic wave = (speed * time)/2 .

1. Use method and timing chart of ultrasonic module:

2. Setting the delay time of Trig pin of SR04 to 10s at least, which can trigger it to detect distance.

3. After triggering, the module will automatically send eight 40KHz ultrasonic pulses and detect whether there is
a signal return. This step will be completed automatically by the module.

4. If the signal returns, the Echo pin will output a high level, and the duration of the high level is the time from the
transmission of the ultrasonic wave to the return.

6.4. 4. Projects 375

keyestudio WiKi

4. Schematic Diagram

Ultrasonic Sensor RPI GPIO-PCF8591 Shield
Vcc 5V
Trig S(IO23)
Echo S(IO24)
Gnd GND

5. Run Example Code

Input the following commands in the terminal and press“Enter”:

cd /home/pi/pythonCode_A

python 35_ultrasonic.py

6. Test Results

The terminal will print the detected distance value, and its unit is cm.

Note: Press Ctrl + C on keyboard to exit code running.

7. Example Code

import RPi.GPIO as GPIO
import time

GPIO.setmode(GPIO.BCM)

#define GPIO pin
GPIO_TRIGGER = 23

(continues on next page)

376 Chapter 6. Python Tutorial

keyestudio WiKi

(continued from previous page)

GPIO_ECHO = 24

#set GPIO mode (IN / OUT)
GPIO.setup(GPIO_TRIGGER, GPIO.OUT)
GPIO.setup(GPIO_ECHO, GPIO.IN)

def distance():
10us is the trigger signal
GPIO.output(GPIO_TRIGGER, True)
time.sleep(0.00001) #10us
GPIO.output(GPIO_TRIGGER, False)

start_time = time.time()
stop_time = time.time()

while GPIO.input(GPIO_ECHO) == 0: #Indicates that the ultrasonic wave has been␣
→˓emitted

start_time = time.time() #Record launch time

while GPIO.input(GPIO_ECHO) == 1: #Indicates that the returned ultrasound has been␣
→˓received

stop_time = time.time() #Record receiving time

time_elapsed = stop_time - start_time #Time difference from transmit to receive
distance = (time_elapsed * 34300) / 2 #Calculate the distance
return distance #Return to calculated distance

if __name__ == '__main__': #Program entry
try:

while True:
dist = distance() #
print("Measured Distance = {:.2f} cm".format(dist)) #{:.2f},Keep two decimal␣

→˓places
time.sleep(0.1)

Reset by pressing CTRL + C
except KeyboardInterrupt:

print("Measurement stopped by User")
GPIO.cleanup()

6.4.36 Project 36Light Intensity Detection

1. Description

In this chapter, we will use the TEMT6000 ambient light sensor whose sensitivity is better than photoresistor. We will
learn how to test ambient light intensity using TEMT6000 environmental sensor and Raspberry Pi.

6.4. 4. Projects 377

keyestudio WiKi

2. Components

Raspberry Pi*1 RPI GPIO-PCF8591
Shield*1

TEMT6000 Ambient
Light Sensor*1

F-F DuPont Wires

3. Component Knowledge

TEMT6000 Ambient Light Sensor

This module is mainly composed of a highly sensitive visible photocell (NPN type) triode, which can magnify the
captured tiny light illumination changes by about 100 times, and is easily recognized by the microcontroller for AD
conversion.

And the light intensity is directly proportional to current flowing through. Therefore, it is easy to figure out the light
intensity as long as its voltage is known.

Its response to visible light illumination is similar to that of the human eye, so that can detect the intensity of ambient
light.

4. Schematic Diagram

TEMT6000 Ambient Light Sensor RPI GPIO-PCF8591 Shield
S S(A0)
V 5V
G G

378 Chapter 6. Python Tutorial

keyestudio WiKi

5. Run Example Code

Special Note: The I2C communication method is used in the experiment. We need to check the iic address first(enter
commandi2cdetect -y 1 and press“Enter”). If failed, check the wiring is correct or not. If correct, you need to enable
I2C communication function of Raspberry Pi, project 24 is for your reference.

After enabling the I2C communicationinput the following commands and press “Enter”:

cd /home/pi/pythonCode_A

python 36_TEMT6000_Ambient_Light.py

6. Test Results

The terminal will show the ambient light value. The stronger the ambient light, the larger the analog value.

Note: Press Ctrl + C on keyboard to exit code running.

7. Example Code

import RPi.GPIO as GPIO
import smbus
import time

GPIO.setmode(GPIO.BCM)
GPIO.setwarnings(False)

address = 0x48 ##address ---> device address
cmd = 0x40 ##DA converter command
A0 = 0x40 ##A0 ----> port address
A1 = 0x41
A2 = 0x42
A3 = 0x43
bus = smbus.SMBus(1) ##start the bus

def analogRead(count): #function,read analog data
read_val = bus.read_byte_data(address,cmd+count)
return read_val

while True: ##loop
#Vout = 10 ##10*0.0196=0.196V
#bus.write_byte_data(address,cmd,Vout) ##DA converter
value = analogRead(0) ##read A0 data
print("Ambient Light:%1.0f" %(value)) ##print data

time.sleep(0.5) ##delay 0.5 second
GPIO.cleanup()

6.4. 4. Projects 379

keyestudio WiKi

6.4.37 Project 37Pressure Detection

1. Description

In the previous project, we learned to obtain a variety of information through different sensors, such as temperatures,
light, sound, gases, and so on.

Now let’s use the thin-film pressure sensor and the Raspberry Pi to detect external pressure sizes.

2. Components:

Raspberry Pi*1 RPI GPIO-PCF8591
Shield*1

Thin-film Pressure Sen-
sor*1

F-F DuPont Wires

3. Component Knowledge

Thin-film Pressure Sensor

This sensor adopts the flexible Nano pressure-sensitive material with an ultra-thin film pad. It has the functions of
water-proof and pressure detection.

When the sensor detects the outside pressure, the resistance of sensor will make a change. So we can use the circuit to
convert the pressure signal that senses pressure change into the corresponding electric signal output. In this way, we
can know the conditions of pressure changes by detecting the signal changes.

4. Schematic Diagram

Thin-film Pressure Sensor RPI GPIO-PCF8591 Shield
S S(A0)
V 5V
G G

380 Chapter 6. Python Tutorial

keyestudio WiKi

5. Run Example Code

Special Note: The I2C communication method is used in the experiment. We need to check the iic address first(enter
commandi2cdetect -y 1 and press“Enter”). If failed, check the wiring is correct or not. If correct, you need to enable
I2C communication function of Raspberry Pi, project 24 is for your reference.

After enabling the I2C communicationinput the following commands and press “Enter”:

cd /home/pi/pythonCode_A

python 37_pressure_transducer.py

6. Test Results

The terminal will print the external pressure analog value. The greater the external pressure, the larger the analog value;
on the contrary, the smaller the analog value.

Note: Press Ctrl + C on keyboard to exit code running.

7. Example Code

import RPi.GPIO as GPIO
import smbus
import time

GPIO.setmode(GPIO.BCM)
GPIO.setwarnings(False)

address = 0x48 ##address ---> device address
cmd = 0x40 ##DA converter command
A0 = 0x40 ##A0 ----> port address
A1 = 0x41
A2 = 0x42
A3 = 0x43
bus = smbus.SMBus(1) ##start the bus

def analogRead(count): #function,read analog data
(continues on next page)

6.4. 4. Projects 381

keyestudio WiKi

(continued from previous page)

read_val = bus.read_byte_data(address,cmd+count)
return read_val

while True: ##loop
#Vout = 10 ##10*0.0196=0.196V
#bus.write_byte_data(address,cmd,Vout) ##DA converter
value = analogRead(0) ##read A0 data
print("pressure value:%1.0f" %(value)) ##print data

time.sleep(0.5) ##delay 0.5 second
GPIO.cleanup()

6.4.38 Project 38Temperature Detection

1. Description

Thermistor is a resistor, and its resistance depends on temperature and temperature changes. Therefore, we can use this
feature to make a thermometer.

2. Components

Raspberry Pi*1 RPI GPIO-PCF8591
Shield*1

Analog Temperature
Sensor*1

F-F DuPont Wires

3. Component Knowledge

Analog Temperature Sensor

The main part of this sensor is a thermistor which is quite sensitive to temperature. When it senses the changes of
temperature, it makes changes in its resistance. This function of it can be used to detect temperature. Therefore, it has
found applications in gardening, home alarm systems and other devices.

The NTC-MF52AT thermistor of 10K (P1) S and resistor R1 of 4.7K are connected in series. The resistance value of
the thermistor alters with temperature changes.

382 Chapter 6. Python Tutorial

keyestudio WiKi

Calculation of NTC thermistor:

The calculation formula of the for NTC thermistor is: $𝑅𝑡 = 𝑅 * 𝐸𝑋𝑃 [𝐵 * (1/𝑇1 − 1/𝑇2)]$ Among them, T1
and T2 refer to degrees, which is the temperature in Kelvin;

Rt is the resistance of the thermistor at temperature T1;

R is the nominal resistance of the thermistor at normal temperature T2, and the resistance of the 10K thermistor at
25°C is 10K (that is, R=10K); T2 = (273.15 + 25);

EXP[n] represents en (e to the nth power);

The value of B is an important parameter of thermistor and B=3950.

We can use the value measured by the ADC converter to get the resistance value of the thermistor, and then use the
formula to get the temperature value. Therefore, the temperature formula can be derived as T1=1/(ln(Rt/R)/B+1/T2)
, where ln can be converted to log, that is.

𝑇1 = 1/(𝑙𝑜𝑔(𝑅𝑡/𝑅)/𝐵 + 1/𝑇2)

The corresponding Celsius temperature is t=T1-273.15, and the deviation is ±0.5.

6.4. 4. Projects 383

keyestudio WiKi

4. Schematic Diagram

Analog Temperature Sensor RPI GPIO-PCF8591 Shield
S S(A0)
V 5V
G G

5. Run Example Code

Special Note: The I2C communication method is used in the experiment. We need to check the iic address first(enter
commandi2cdetect -y 1 and press“Enter”). If failed, check the wiring is correct or not. If correct, you need to enable
I2C communication function of Raspberry Pi, project 24 is for your reference.

After enabling the I2C communicationinput the following commands and press “Enter”:

cd /home/pi/pythonCode_A

python 38_analog_temperature.py

6. Test Results

The terminal will print the ADC value, the voltage value, and the temperature value of the analog temperature sensor.

Note: Press Ctrl + C on keyboard to exit code running.

7. Example Code

import RPi.GPIO as GPIO
import smbus
import math
import time

GPIO.setmode(GPIO.BCM)
GPIO.setwarnings(False)

(continues on next page)

384 Chapter 6. Python Tutorial

keyestudio WiKi

(continued from previous page)

address = 0x48 ##address ---> device address
cmd = 0x40 ##DA converter command
A0 = 0x40 ##A0 ----> port address
A1 = 0x41
A2 = 0x42
A3 = 0x43
bus = smbus.SMBus(1) ##start the bus

def analogRead(count): #function,read analog data
read_val = bus.read_byte_data(address,cmd+count)
return read_val

while True: ##loop
value = analogRead(0) # read ADC value A0 pin
voltage = value / 255.0 * 5.0 # calculate voltage
Rt = 4.7 * (5.0 / voltage) - 4.7 ; #calculate resistance value of thermistor, 5.

→˓0*(R/(Rt+R))=voltage,>>>Rt=R*(5.0/voltage)-R
tempK = 1/(1/(273.15 + 25) + math.log(Rt/4.7)/3950.0)

→˓# calculate temperature (Kelvin)
tempC = tempK - 273.15 # calculate temperature (Celsius)
print ('ADC Value : %d, Voltage : %.2f, Temperature : %.2f'%(value,voltage,tempC))

time.sleep(0.02)
GPIO.cleanup()

6.4.39 Project 39Ultraviolet Light Detection

1. Description

UV is a kind of physics optics. The main ultraviolet light source in nature is the sun. Most of the ultraviolet rays emitted
by sunlight is absorbed by ozone in the atmosphere, and very few partially irradiates to the earth.

We can detect how much the ultraviolet rays of sunlight using ultraviolet sensors.

2. Components

Raspberry Pi*1 RPI GPIO-PCF8591
Shield*1

GUVA-S12SD Ultraviolet
Sensor*1

F-F Dupont Wires

6.4. 4. Projects 385

keyestudio WiKi

3. Component Knowledge

GUVA-S12SD Ultraviolet Sensor

It can detect UV and UV index, applied to some wearable devices such as watches and smartphones. It can also be used
to monitor the intensity of ultraviolet rays, or ultraviolet flame detectors when used as ultraviolet sterilization items.
Its output current is proportional to light intensity. This sensor is mainly for ultraviolet measurements in the sun and
the UVA lamp strength measurement and UVI detection.

4. Schematic Diagram

GUVA-S12SD Ultraviolet Sensor RPI GPIO-PCF8591 Shield
S S(A0)
V 5V
G G

5. Run Example Code

Special Note: The I2C communication method is used in the experiment. We need to check the iic address first(enter
commandi2cdetect -y 1 and press“Enter”). If failed, check the wiring is correct or not. If correct, you need to enable
I2C communication function of Raspberry Pi, project 24 is for your reference.

After enabling the I2C communicationinput the following commands and press “Enter” :

cd /home/pi/pythonCode_A

python 39_ultraviolet_ray.py

386 Chapter 6. Python Tutorial

keyestudio WiKi

6. Test Results

Turn on an ultraviolet pen (we don’t provide) and point at the ultraviolet sensor , the terminal will print out the ultraviolet
intensity value.

Note: Press Ctrl +C on keyboard to exit code running.

7. Example Code

import RPi.GPIO as GPIO
import smbus
import time

GPIO.setmode(GPIO.BCM)
GPIO.setwarnings(False)

address = 0x48 ##address ---> device address
cmd = 0x40 ##DA converter command
A0 = 0x40 ##A0 ----> port address
A1 = 0x41
A2 = 0x42
A3 = 0x43
bus = smbus.SMBus(1) ##start the bus

def analogRead(count): #function,read analog data
read_val = bus.read_byte_data(address,cmd+count)
return read_val

while True: ##loop
value = analogRead(0) ##read A0 data
print("ultraviolet intensity:%1.0f" %(value)) ##print data
time.sleep(0.05) ##delay 0.05 second

GPIO.cleanup()

6.4. 4. Projects 387

	1. Description:
	2. Kit List:
	3. Resources:
	C Language Tutorial
	1. Install Raspberry Pi OS System：
	2. Install Raspberry Pi OS on Raspberry Pi 4B
	3. Preparations for C Language
	Hardware：
	GPIO Extension Board：
	Install WiringPi GPIO Library
	Run Example Code1：

	4. Projects：
	Project 1：Hello World
	Project 2：LED Blinks
	Project 3：SOS Light
	Project 4：Breathing LED
	Project 5：Traffic Lights
	Project 6：Illuminating Lamp
	Project 7：RGB Light
	Project 8：Doorbell
	Project 9：Passive Buzzer
	Project 10：Button-controlled LED
	Project 11：PIR Motion Sensor
	Project 12：Fire Alarm
	Project 13：Electronic Hourglass
	Project 14：Collision Alarm
	Project 15：Line-tracking Sensor
	Project 16：Photo Interrupter Module
	Project 17：Magnetic Detection
	Project 18：5V Relay
	Project19：Touch-sensitive Alarm
	Project 20：Obstacle Avoidance Sensor
	Project 21：Reed Switch Module
	Project 22：Vibration Alarm
	Project 23：Servo
	Project 24：Adjust the Brightness of LED
	Project 25：Photoresistor
	Project 26：Sound-activated Light
	Project 27：I2C LCD1602
	Project 28：Water Level Monitor
	Project 29：Flower-watering Device
	Project 30：Temperature Alarm
	Project 31：Steam in the Air
	Project 32：MQ-2 Gas Leakage Alarm
	Project 33：Alcohol Tester
	Project 34：Joystick Module
	Project 35：Ultrasonic Sensor
	Project 36： Light Intensity Detection
	Project 37：Pressure Measurement
	Project 38：Temperature Detection
	Project 39: Ultraviolet Light Detection

	Processing JAVA Tutorial
	1.Preparations
	(1)Install processing IDE
	(2)Use Processing IDE
	(3)Copy Example Code to Raspberry Pi

	2.Projects
	Project 1：Print Hello World
	Project 2：LED Blinks
	Project 3：Mouse-controlled LED
	Project 4：Breathing LED
	Project 5：RGB
	Project 6：Active Buzzer
	Project 7：Button-controlled LED
	Project 8：PIR Motion Sensor
	Project 9：Fire Alarm
	Project 10： Collision Alarm
	Project 11： Line-tracking Sensor
	Project 12： Magnetic Detection
	Project 14： Rotary Potentiometer
	Project 15： Photoresistor
	Project 16： Water Level Monitor
	Project 17： Flower-watering Device
	Project 18：Joystick

	Python Tutorial
	1. Install Raspberry Pi OS System：
	1.1Hardware Tool：
	1.2Software Tool
	(1) Install putty:
	(2) SSH Remote Login software -WinSCP
	(3) SD Card Formatter
	(4) Burn Win32DiskImager
	(5) Scan to search ip address software tool—WNetWatcher
	(6) Raspberry Pi Imager

	2.Install Raspberry Pi OS on Raspberry Pi 4B
	(1) Burn System
	(2)Log in system
	(3) Remote Login
	(4) Check ip and mac address
	(5) Fix ip address of Raspberry Pi
	(6) Log in Desktop on Raspberry Pi Wirelessly
	(7) Open the remote desktop connection on Windows

	3. Preparations for Python
	3.1Hardware：
	Raspberry Pi 4B：
	Hardware Interfaces：
	40-Pin GPIO Header Description：
	RPI GPIO-PCF8591 Shield：

	3.2Copy Example Code Folder to Raspberry Pi：

	4. Projects：
	Project 1：Python3 Shell
	Project 2：LED Blinks
	1. Description：
	2. Components：
	3. Component Description：
	4. Schematic Diagram：
	5. The principle to control the LED：
	6. Run Example Code：
	7. Test Results：
	8. Example Code：
	9. Explanation：

	Project 3: SOS Light
	1. Description：
	2. Components:
	3. Schematic Diagram：
	4. Run Example Code：
	5. Test Results：
	6. Example Code:

	Project 4: Breathing LED
	1. Description：
	2. Components：
	3. Working Principle：
	4.Schematic Diagram：
	5. Run Example Code：
	6. Test Results：
	7. Example Code

	Project 5: Traffic Lights
	1. Description：
	2. Components：
	3. Schematic Diagram：
	4. Run Example Code：
	5. Test Results：
	6. Example Code：

	Project 6：Illuminating Lamp
	1. Description：
	2. Components：
	3. Schematic Diagram：
	4. Run Example Code：
	5. Test Results：
	6. Example Code：

	Project 7：RGB Light
	1. Description：
	2. Components：
	3. Component Knowledge：
	4. Schematic Diagram：
	5. Run Example Code：
	6. Test Results：
	7. Example Code：

	Project 8：Doorbell
	1. Description：
	2. Components：
	3. Components Knowledge:
	4. Schematic Diagram：
	5. Run Example Code：
	6. Test Results：
	7. Example Code：

	Project 9: Passive Buzzer
	1. Description：
	2. Components：
	3. Component Knowledge
	4. Schematic Diagram：
	5. Run Example Code1：
	6. Test Results1：
	7. Example Code1：
	8. Run Example Code 2：
	9. Test Results 2：
	10. Example Code2：

	Project 10：Button-controlled LED
	1. Description：
	2. Components：
	3. Schematic Diagram：
	4. Eliminate Button Shaking
	5. Run Example Code：
	6. Test Results：
	7. Example Code：

	Project 11：PIR Motion Sensor
	1. Description：
	2. Components：
	3. Component Knowledge
	4. Schematic Diagram：
	5. Run Example Code：
	6. Test Results：
	7. Example Code：

	Project 12：Fire Alarm
	1. Description：
	2. Components：
	3. Component Knowledge
	4. Schematic Diagram：
	5. Run Example Code：
	6. Test Results：
	7. Example Code：

	Project 13：Electronic Hourglass
	1. Description：
	2. Components：
	3. Component Knowledge
	4. Schematic Diagram：
	5. Run Example Code：
	6. Test Results：
	7. Example Code：

	Project 14：Collision Alarm
	1. Description：
	2. Components：
	3. Component Knowledge
	4. Schematic Diagram：
	5. Run Example Code：
	6. Test Results：
	7. Example Code：

	Project 15：Line Tracking Sensor
	1. Description：
	2. Components：
	3. Component Knowledge：
	4. Schematic Diagram：
	5. Run Example Code：
	6. Test Results：
	7. Example Code：

	Project 16：Photo Interrupter Module
	1. Description：
	2. Components：
	3. Component Knowledge：
	4. Schematic Diagram：
	5. Run Example Code：
	6. Test Results：
	7. Example Code：

	Project 17：Magnetic Detection
	1. Description：
	2. Components：
	3. Component Knowledge：
	4. Schematic Diagram：
	5. Run Example Code：
	6. Test Results：
	7. Example Code：

	Project 18：5V Relay
	1. Description：
	2. Components：
	3. Component Knowledge
	4. Schematic Diagram：
	5. Run Example Code：
	6. Test Results：
	7. Example Code：

	Project 19: Touch capacitive Alarm
	1. Description：
	2. Components：
	3. Component Knowledge：
	4. Schematic Diagram：
	5. Run Example Code：
	6. Test Results：
	7. Example Code：

	Project 20：Obstacle Avoidance Sensor
	1. Description：
	2. Components：
	3. Component Knowledge：
	4. Schematic Diagram：
	5. Run Example Code
	6. Test Results：
	7. Example Code：

	Project 21：Reed Switch Module
	1. Description：
	2. Components：
	3. Component Knowledge：
	4. Schematic Diagram：
	5. Run Example Code：
	6. Test Results：
	7. Example Code：

	Project 22：Vibration Sensor
	1. Description：
	2. Components：
	3. Component Knowledge：
	4. Schematic Diagram：
	5. Run Example Code：
	6. Test Results：
	7. Example Code：

	Project 23：Servo
	1. Description：
	2. Components：
	3. Component Knowledge
	4. Schematic Diagram：
	5. Run Example Code：
	6. Test Results：
	7. Example Code：

	Project 24：Adjust the Brightness of LED
	1. Description：
	2. Components：
	3. Component Knowledge：
	4. Schematic Diagram：
	5. Run Example Code：
	6. Test Results：
	7. Example Code：
	8. Explanation：

	Project 25：Photoresistor
	1. Description：
	2. Components：
	3. Component Knowledge
	4. Schematic Diagram：
	5. Run Example Code：
	6. Test Results：
	7. Example Code：

	Project 26：Sound-activated Light
	1. Description：
	2. Components:
	3. Component：
	4. Schematic Diagram：
	5. Run Example Code：
	6. Test Results：
	7. Example Code：

	Project 27：LCD1602
	1. Description：
	2. Components：
	3. Component Knowledge：
	4. Schematic Diagram：
	5. Run Example Code：
	6. Test Results：
	7. Example Code：

	Project 28：Water Level Monitor
	1. Description：
	2. Components:
	3. Component Knowledge
	4. Schematic Diagram：
	5. Run Example Code：
	6. Test Results：
	7. Example Code：

	Project 29：Flower-watering Device
	1. Description：
	2. Components：
	3. Component Knowledge
	4. Schematic Diagram：
	5. Run Example Code：
	6. Test Results：
	7. Example Code：

	Project 30：Temperature Alarm
	1. Description：
	2. Components：
	3. Component Knowledge：
	4. Schematic Diagram：
	5. Run Example Code：
	6. Test Results：
	7. Example Code：

	Project 31: Steam Sensor
	1. Description：
	2. Components：
	3. Component Knowledge：
	4. Schematic Diagram：
	5. Run Example Code：
	6. Test Results：
	7. Example Code：

	Project 32：Gas Leakage Alarm
	1. Description：
	2. Components：
	3. Component Knowledge：
	4. Schematic Diagram：
	5. Run Example Code：
	6. Test Results：
	7. Example Code：

	Project 33：Alcohol Tester
	1. Description：
	2. Components：
	3. Component Knowledge：
	4. Schematic Diagram：
	5. Run Example Code：
	6. Test Results：
	7. Example Code：

	Project 34：Joystick Module
	1. Description：
	2. Components：
	3. Component Knowledge：
	4. Schematic Diagram：
	5. Run Example Code：
	6. Test Results：
	7. Example Code：

	Project 35：Ultrasonic Sensor
	1. Description：
	2. Components：
	3. Component Knowledge：
	4. Schematic Diagram：
	5. Run Example Code：
	6. Test Results：
	7. Example Code：

	Project 36：Light Intensity Detection
	1. Description：
	2. Components：
	3. Component Knowledge：
	4. Schematic Diagram：
	5. Run Example Code：
	6. Test Results：
	7. Example Code：

	Project 37：Pressure Detection
	1. Description：
	2. Components:
	3. Component Knowledge：
	4. Schematic Diagram：
	5. Run Example Code：
	6. Test Results：
	7. Example Code：

	Project 38：Temperature Detection
	1. Description：
	2. Components：
	3. Component Knowledge：
	4. Schematic Diagram：
	5. Run Example Code：
	6. Test Results：
	7. Example Code：

	Project 39：Ultraviolet Light Detection
	1. Description：
	2. Components：
	3. Component Knowledge：
	4. Schematic Diagram：
	5. Run Example Code：
	6. Test Results：
	7. Example Code：

